Patents by Inventor Chia-Yao Lo

Chia-Yao Lo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11719880
    Abstract: A perovskite optical element includes a light guiding unit and a luminescent layer. The light guiding unit is configured to conduct light and serves as a resonant cavity. The luminescent layer is a thin film made of perovskite material and clads the light guiding unit. The luminescent layer is configured to be excited by an excitation module to emit light. The light is conducted and output by the light guiding unit. A manufacturing method of a perovskite optical element includes preparing a dip coating solution; dipping a single crystal optical fiber in the dip coating solution for one hour, removing the single crystal optical fiber out of the dip coating solution, and drying the single crystal optical fiber; and placing the single crystal optical fiber into a tube furnace, heating the crystal optical fiber, and introducing synthetic molecules into the tube furnace.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: August 8, 2023
    Assignee: NATIONAL DONG HWA UNIVERSITY
    Inventors: Duc-Huy Nguyen, Jia-Yuan Sun, Chia-Yao Lo, Jia-Ming Liu, Wan-Shao Tsai, Ming-Hung Li, Sin-Jhang Yang, Cheng-Chia Lin, Shien-Der Tzeng, Yuan-Ron Ma, Ming-Yi Lin, Chien-Chih Lai
  • Publication number: 20230118309
    Abstract: A perovskite optical element includes a light guiding unit and a luminescent layer. The light guiding unit is configured to conduct light and serves as a resonant cavity. The luminescent layer is a thin film made of perovskite material and clads the light guiding unit. The luminescent layer is configured to be excited by an excitation module to emit light. The light is conducted and output by the light guiding unit. A manufacturing method of a perovskite optical element includes preparing a dip coating solution; dipping a single crystal optical fiber in the dip coating solution for one hour, removing the single crystal optical fiber out of the dip coating solution, and drying the single crystal optical fiber; and placing the single crystal optical fiber into a tube furnace, heating the crystal optical fiber, and introducing synthetic molecules into the tube furnace.
    Type: Application
    Filed: December 10, 2021
    Publication date: April 20, 2023
    Inventors: DUC-HUY NGUYEN, JIA-YUAN SUN, CHIA-YAO LO, JIA-MING LIU, WAN-SHAO TSAI, MING-HUNG LI, SIN-JHANG YANG, CHENG-CHIA LIN, SHIEN-DER TZENG, YUAN-RON MA, MING-YI LIN, CHIEN-CHIH LAI
  • Patent number: 8146389
    Abstract: The present invention relates to a fiber having a core of crystal fiber doped with chromium and a glass cladding. The fiber has a gain bandwidth of more than 300 nm including 1.3 mm to 1.6 mm in optical communication, and can be used as light source, optical amplifier and tunable laser when being applied for optical fiber communication. The present invention also relates to a method of making the fiber. First, a chromium doped crystal fiber is grown by laser-heated pedestal growth (LHPG). Then, the crystal fiber is cladded with a glass cladding by codrawing laser-heated pedestal growth (CDLHPG). Because it is a high temperature manufacture process, the cladding manufactured by this method is denser than that by evaporation technique, and can endure relative high damage threshold power for the pumping light.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: April 3, 2012
    Assignee: National Sun Yat-Sen University
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Shih-Yu Tu, Hsiao-Wen Lee, Sheng-Pan Huang, Sun-Bin Yin
  • Patent number: 8001806
    Abstract: A double-clad optical fiber fabrication method including the steps of: preparing a crystal fiber, inserting the crystal fiber into a silica capillary, attaching a sapphire tube to the periphery of the silica capillary, and applying a laser beam to the sapphire tube to increase the temperature of the sapphire tube and to further fuse the silica capillary with thermal radiation to have the fused silica capillary be wrapped about the crystal fiber, thereby forming the desired double-clad optical fiber.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: August 23, 2011
    Assignee: National Sun Yat-Sen University
    Inventors: Kwang-Yao Huang, Chia-Yao Lo, Sheng-Lung Huang
  • Publication number: 20100229604
    Abstract: A double-clad optical fiber fabrication method including the steps of: preparing a crystal fiber, inserting the crystal fiber into a silica capillary, attaching a sapphire tube to the periphery of the silica capillary, and applying a laser beam to the sapphire tube to increase the temperature of the sapphire tube and to further fuse the silica capillary with thermal radiation to have the fused silica capillary be wrapped about the crystal fiber, thereby forming the desired double-clad optical fiber.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 16, 2010
    Applicant: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Kwang-Yao Huang, Chia-Yao Lo, Sheng-Lung Huang
  • Patent number: 7630415
    Abstract: A method of fabricating micro crystal fiber lasers and frequency-doubling crystal fibers is disclosed. The micro crystal fiber laser contains gain crystal fibers, frequency-doubling crystal fibers, and a semiconductor laser. The semiconductor laser provides a laser beam. The gain crystal fibers receive the laser beam and generate a base-frequency beam. The frequency-doubling crystal fibers have a polarization alternating period. The frequency-doubling crystal fibers are coupled to the gain crystal fibers to double the frequency of the base-frequency beam and provide a double-frequency beam with the required wavelength. In addition to providing a monochromic crystal fiber laser, the crystal fiber lasers in red, green, and blue light may be combined into an array, providing a color laser. The frequency-doubling crystal fiber can be formed using the LHPG method.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: December 8, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Sheng-Pan Huang, Sun-Bin Yin
  • Patent number: 7519262
    Abstract: The present invention relates to a fiber having a core of crystal fiber doped with chromium and a glass cladding. The fiber has a gain bandwidth of more than 300 nm including 1.3 mm to 1.6 mm in optical communication, and can be used as light source, optical amplifier and tunable laser when being applied for optical fiber communication. The present invention also relates to a method of making the fiber. First, a chromium doped crystal fiber is grown by laser-heated pedestal growth (LHPG). Then, the crystal fiber is cladded with a glass cladding by codrawing laser-heated pedestal growth (CDLHPG). Because it is a high temperature manufacture process, the cladding manufactured by this method is denser than that by evaporation technique, and can endure relative high damage threshold power for the pumping light.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: April 14, 2009
    Assignee: National Sun Yat-Sen University
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Shih-Yu Tu, Hsiao-Wen Lee, Sheng-Pan Huang, Sun-Bin Yin
  • Patent number: 7352949
    Abstract: The present invention relates to a fiber having a core of crystal fiber doped with chromium and a glass cladding. The fiber has a gain bandwidth of more than 300 nm including 1.3 mm to 1.6 mm in optical communication, and can be used as light source, optical amplifier and tunable laser when being applied for optical fiber communication. The present invention also relates to a method of making the fiber. First, a chromium doped crystal fiber is grown by laser-heated pedestal growth (LHPG). Then, the crystal fiber is cladded with a glass cladding by codrawing laser-heated pedestal growth (CDLHPG). Because it is a high temperature manufacture process, the cladding manufactured by this method is denser than that by evaporation technique, and can endure relative high damage threshold power for the pumping light.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: April 1, 2008
    Assignee: National Sun Yat-Sen University
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Shih-Yu Tu, Hsiao-Wen Lee, Sheng-Pan Huang, Sun-Bin Yin
  • Publication number: 20080047303
    Abstract: A double-clad optical fiber fabrication method including the steps of: preparing a crystal fiber, inserting the crystal fiber into a silica capillary, attaching a sapphire tube to the periphery of the silica capillary, and applying a laser beam to the sapphire tube to increase the temperature of the sapphire tube and to further fuse the silica capillary with thermal radiation to have the fused silica capillary be wrapped about the crystal fiber, thereby forming the desired double-clad optical fiber.
    Type: Application
    Filed: November 1, 2006
    Publication date: February 28, 2008
    Applicant: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Kwang-Yao Huang, Chia-Yao Lo, Sheng-Lung Huang
  • Patent number: 7333263
    Abstract: An optical amplifier includes an optical fiber having a core doped with transition metal ions, and at least one glass cladding enclosing the core. By using the fiber, the optical amplifier of the invention has a gain bandwidth of more than 300 nm including 1300-1600 nm band in low-loss optical communication.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: February 19, 2008
    Assignee: National Sun Yat-Sen University
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Jian-Cheng Chen, Chiang-Yuan Chuang, Chien-Chih Lai, Yen-Sheng Lin, Ping-Hui Sophia Yeh
  • Publication number: 20070263969
    Abstract: The present invention relates to a fiber having a core of crystal fiber doped with chromium and a glass cladding. The fiber has a gain bandwidth of more than 300 nm including 1.3 mm to 1.6 mm in optical communication, and can be used as light source, optical amplifier and tunable laser when being applied for optical fiber communication. The present invention also relates to a method of making the fiber. First, a chromium doped crystal fiber is grown by laser-heated pedestal growth (LHPG). Then, the crystal fiber is cladded with a glass cladding by codrawing laser-heated pedestal growth (CDLHPG). Because it is a high temperature manufacture process, the cladding manufactured by this method is denser than that by evaporation technique, and can endure relative high damage threshold power for the pumping light.
    Type: Application
    Filed: April 27, 2007
    Publication date: November 15, 2007
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Shih-Yu Tu, Hsiao-Wen Lee, Sheng-Pan Huang, Sun-Bin Yin
  • Publication number: 20060174658
    Abstract: The present invention relates to a fiber having a core of crystal fiber doped with chromium and a glass cladding. The fiber has a gain bandwidth of more than 300 nm including 1.3 mm to 1.6 mm in optical communication, and can be used as light source, optical amplifier and tunable laser when being applied for optical fiber communication. The present invention also relates to a method of making the fiber. First, a chromium doped crystal fiber is grown by laser-heated pedestal growth (LHPG). Then, the crystal fiber is cladded with a glass cladding by codrawing laser-heated pedestal growth (CDLHPG). Because it is a high temperature manufacture process, the cladding manufactured by this method is denser than that by evaporation technique, and can endure relative high damage threshold power for the pumping light.
    Type: Application
    Filed: March 17, 2006
    Publication date: August 10, 2006
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Shih-Yu Tu, Hsiao-Wen Lee, Sheng-Pan Huang, Sun-Bin Yin
  • Publication number: 20060164717
    Abstract: An optical amplifier includes an optical fiber having a core doped with transition metal ions, and at least one glass cladding enclosing the core. By using the fiber, the optical amplifier of the invention has a gain bandwidth of more than 300 nm including 1300-1600 nm band in low-loss optical communication.
    Type: Application
    Filed: January 24, 2005
    Publication date: July 27, 2006
    Applicant: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Jian-Cheng Chen, Chiang-Yuan Chuang, Chien-Chih Lai, Yen-Sheng Lin, Ping-hui Yeh
  • Publication number: 20060110122
    Abstract: The present invention relates to a fiber having a core of crystal fiber doped with chromium and a glass cladding. The fiber has a gain bandwidth of more than 300 nm including 1.3 mm to 1.6 mm in optical communication, and can be used as light source, optical amplifier and tunable laser when being applied for optical fiber communication. The present invention also relates to a method of making the fiber. First, a chromium doped crystal fiber is grown by laser-heated pedestal growth (LHPG). Then, the crystal fiber is cladded with a glass cladding by codrawing laser-heated pedestal growth (CDLHPG). Because it is a high temperature manufacture process, the cladding manufactured by this method is denser than that by evaporation technique, and can endure relative high damage threshold power for the pumping light.
    Type: Application
    Filed: November 24, 2004
    Publication date: May 25, 2006
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Shih-Yu Tu, Hsiao-Wen Lee, Sheng-Pan Huang, Sun-Bin Yin
  • Publication number: 20060002433
    Abstract: A method of fabricating micro crystal fiber lasers and frequency-doubling crystal fibers is disclosed. The micro crystal fiber laser contains gain crystal fibers, frequency-doubling crystal fibers, and a semiconductor laser. The semiconductor laser provides a laser beam. The gain crystal fibers receive the laser beam and generate a base-frequency beam. The frequency-doubling crystal fibers have a polarization alternating period. The frequency-doubling crystal fibers are coupled to the gain crystal fibers to double the frequency of the base-frequency beam and provide a double-frequency beam with the required wavelength. In addition to providing a monochromic crystal fiber laser, the crystal fiber lasers in red, green, and blue light may be combined into an array, providing a color laser. The frequency-doubling crystal fiber can be formed using the LHPG method.
    Type: Application
    Filed: November 1, 2004
    Publication date: January 5, 2006
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Sheng-Pan Huang, Sun-Bin Yin