Patents by Inventor Chia-Ying Liu

Chia-Ying Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150289769
    Abstract: An embodiment in accordance with the present invention provides a system and method for determining cardiac events. The system and method include using an imaging modality to obtain a cardiac image of the subject. The image is then used to determine the subject's systolic, post-systolic, and early diastolic strain peaks. Additionally, a strain rate index (SRI) value is computed for the subject using the systolic, post-systolic, and early diastolic strain peaks. The SRI value can then be used to determine a level of risk of cardiac failure. Further, a likelihood of atrial fibrillation can also be determined. The SRI value and risk of cardiac event can then be used to create a treatment plan for the subject, if necessary.
    Type: Application
    Filed: November 1, 2013
    Publication date: October 15, 2015
    Inventors: Bharath Ambale Venkatesh, Anderson Armstrong, Joao A.C. Lima, Chia-Ying Liu, Boaz D. Rosen
  • Patent number: 8729655
    Abstract: Methods of forming isolation structures are disclosed. A method of forming isolation structures for an image sensor array of one aspect may include forming a dielectric layer over a semiconductor substrate. Narrow, tall dielectric isolation structures may be formed from the dielectric layer. The narrow, tall dielectric isolation structures may have a width that is no more than 0.3 micrometers and a height that is at least 1.5 micrometers. A semiconductor material may be epitaxially grown around the narrow, tall dielectric isolation structures. Other methods and apparatus are also disclosed.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: May 20, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chia-Ying Liu, Keh-Chiang Ku, Wu-Zhang Yang
  • Publication number: 20140035087
    Abstract: Methods of forming isolation structures are disclosed. A method of forming isolation structures for an image sensor array of one aspect may include forming a dielectric layer over a semiconductor substrate. Narrow, tall dielectric isolation structures may be formed from the dielectric layer. The narrow, tall dielectric isolation structures may have a width that is no more than 0.3 micrometers and a height that is at least 1.5 micrometers. A semiconductor material may be epitaxially grown around the narrow, tall dielectric isolation structures. Other methods and apparatus are also disclosed.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 6, 2014
    Inventors: Chia-Ying Liu, Keh-Chiang Ku, Wu-Zhang Yang
  • Patent number: 8614112
    Abstract: A method of fabricating a backside-illuminated pixel. The method includes forming frontside components of the pixel on or in a front side of a substrate, the frontside components including a photosensitive region of a first polarity. The method further includes forming a pure dopant region of a second polarity on a back side of the substrate, applying a laser pulse to the backside of the substrate to melt the pure dopant region, and recrystallizing the pure dopant region to form a backside doped layer. Corresponding apparatus embodiments are disclosed and claimed.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: December 24, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Keh-Chiang Ku, Chia-Ying Liu, Hsin-Chih Tai, Vincent Venezia
  • Patent number: 8338263
    Abstract: Methods of forming isolation structures are disclosed. A method of forming isolation structures for an image sensor array of one aspect may include forming a dielectric layer over a semiconductor substrate. Narrow, tall dielectric isolation structures may be formed from the dielectric layer. The narrow, tall dielectric isolation structures may have a width that is no more than 0.3 micrometers and a height that is at least 1.5 micrometers. A semiconductor material may be epitaxially grown around the narrow, tall dielectric isolation structures. Other methods and apparatus are also disclosed.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: December 25, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chia-Ying Liu, Keh-Chiang Ku, Wu-Zhang Yang
  • Publication number: 20120319230
    Abstract: Methods of forming isolation structures are disclosed. A method of forming isolation structures for an image sensor array of one aspect may include forming a dielectric layer over a semiconductor substrate. Narrow, tall dielectric isolation structures may be formed from the dielectric layer. The narrow, tall dielectric isolation structures may have a width that is no more than 0.3 micrometers and a height that is at least 1.5 micrometers. A semiconductor material may be epitaxially grown around the narrow, tall dielectric isolation structures. Other methods and apparatus are also disclosed.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 20, 2012
    Inventors: Chia-Ying Liu, Keh-Chiang Ku, Wu-Zhang Yang
  • Publication number: 20120080765
    Abstract: A method of fabricating a backside-illuminated pixel. The method includes forming frontside components of the pixel on or in a front side of a substrate, the frontside components including a photosensitive region of a first polarity. The method further includes forming a pure dopant region of a second polarity on a back side of the substrate, applying a laser pulse to the backside of the substrate to melt the pure dopant region, and recrystallizing the pure dopant region to form a backside doped layer. Corresponding apparatus embodiments are disclosed and claimed.
    Type: Application
    Filed: October 1, 2010
    Publication date: April 5, 2012
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Keh-Chiang Ku, Chia-Ying Liu, Hsin-Chih Tai, Vincent Venezia
  • Publication number: 20110169991
    Abstract: An image sensor pixel includes a substrate doped to have a first conductivity type. A first epitaxial layer is disposed over the substrate and doped to also have the first conductivity type. A transfer transistor gate is formed on the first epitaxial layer. An epitaxially grown photo-sensor region is disposed in the first epitaxial layer and has a second conductivity type. The epitaxially grown photo-sensor region includes an extension region that extends under a portion of the transfer transistor gate.
    Type: Application
    Filed: January 8, 2010
    Publication date: July 14, 2011
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Keh-Chiang Ku, Chia-Ying Liu, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Duli Mao