Patents by Inventor Chia-Yung WU

Chia-Yung WU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136929
    Abstract: A buck converter includes a high-side N-FET, a low-side N-FET, a P-FET, a between a gate terminal and a source terminal of the P-FET, aa capacitor, and a FET driver. The FET driver operates in a selectable one of a continuous current mode and a discontinuous current mode. In a first phase of the discontinuous current mode, a gate voltage on the gate terminal the N-FET equalizes to a source voltage on the source terminal of the N-FET to turn on the first N-FET. A high output voltage on a high-side output of the FET driver is high enough to overcome a threshold voltage of a body diode of the first P-FET to provide the high output voltage minus a threshold voltage to the gate terminal of the high-side P-FET to turn on the high-side P-FET.
    Type: Application
    Filed: October 24, 2022
    Publication date: April 25, 2024
    Inventors: Chia-Kun Wu, Shao-Suz Ho, Wen-Yung Chang
  • Publication number: 20240128876
    Abstract: A switching control circuit for use in controlling a resonant flyback power converter generates a first driving signal and a second driving signal. The first driving signal is configured to turn on the first transistor to generate a first current to magnetize a transformer and charge a resonant capacitor. The transformer and charge a resonant capacitor are connected in series. The second driving signal is configured to turn on the second transistor to generate a second current to discharge the resonant capacitor. During a power-on period of the resonant flyback power converter, the second driving signal includes a plurality of short-pulses configured to turn on the second transistor for discharging the resonant capacitor. A pulse-width of the short-pulses of the second driving signal is short to an extent that the second current does not exceed a current limit threshold.
    Type: Application
    Filed: June 15, 2023
    Publication date: April 18, 2024
    Inventors: Yu-Chang Chen, Ta-Yung Yang, Kun-Yu Lin, Fu-Ciao Syu, Chia-Hsien Yang, Hsin-Yi Wu
  • Publication number: 20240120844
    Abstract: A resonant flyback power converter includes: a first and a second transistors which form a half-bridge circuit for switching a transformer and a resonant capacitor to generate an output voltage; a current-sense device for sensing a switching current of the half-bridge circuit to generate a current-sense signal; and a switching control circuit generating a first and a second driving signals for controlling the first and the second transistors. The turn-on of the first driving signal controls the half-bridge circuit to generate a positive current to magnetize the transformer and charge the resonant capacitor. The turn-on of the second driving signal controls the half-bridge circuit to generate a negative current to discharge the resonant capacitor. The switching control circuit turns off the first transistor when the positive current exceeds a positive-over-current threshold, and/or, turns off the second transistor when the negative current exceeds a negative-over-current threshold.
    Type: Application
    Filed: April 10, 2023
    Publication date: April 11, 2024
    Inventors: Kun-Yu LIN, Ta-Yung YANG, Yu-Chang CHEN, Hsin-Yi WU, Fu-Ciao SYU, Chia-Hsien YANG
  • Publication number: 20240072411
    Abstract: An electronic device includes a metal back cover, a metal frame, a first antenna module and a second antenna module. The metal frame includes a first and a second disconnection portion, a first and a second connection portion. The first and the second connection portion are connected to the metal back cover. The first disconnection portion is separated from the first connection portion, the metal back cover and the second disconnection portion to form a first slot. The second disconnection portion is connected to the second connection portion and is separated from the metal back cover to form a second slot. The first antenna module is connected to the first disconnection portion, and forms a first antenna path. The second antenna module is connected to the second disconnection portion, and forms a second and a third antenna path with the second disconnection portion and the metal back cover.
    Type: Application
    Filed: July 28, 2023
    Publication date: February 29, 2024
    Applicant: Pegatron Corporation
    Inventors: Chien-Yi Wu, Hau Yuen Tan, Chao-Hsu Wu, Chih-Wei Liao, Chia-Hung Chen, Chen-Kuang Wang, Wen-Hgin Chuang, Chia-Hong Chen, Hsi Yung Chen
  • Publication number: 20230051989
    Abstract: The present disclosure provides a heterodimeric, conditionally active chimeric antigen receptor (CAR), and a nucleic acid comprising a nucleotide sequence encoding the CAR. The present disclosure provides cells genetically modified to produce the CAR. A CAR of the present disclosure can be used in various methods, which are also provided.
    Type: Application
    Filed: September 14, 2022
    Publication date: February 16, 2023
    Inventors: Chia-Yung Wu, James Onuffer, Wendell A. Lim
  • Patent number: 11478510
    Abstract: The present disclosure provides a heterodimeric, conditionally active chimeric antigen receptor (CAR), and a nucleic acid comprising a nucleotide sequence encoding the CAR. The present disclosure provides cells genetically modified to produce the CAR. A CAR of the present disclosure can be used in various methods, which are also provided.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: October 25, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Chia-Yung Wu, James Onuffer, Wendell A. Lim
  • Publication number: 20220213452
    Abstract: The present disclosure provides conditionally active, heterodimeric polypeptides. The conditionally active, heterodimeric polypeptides are active in the presence of a dimerizing agent that induces dimerization of the polypeptides of the heterodimer. A conditionally active, heterodimeric polypeptide of the present disclosure is useful in a variety of research and treatment methods, which are also provided.
    Type: Application
    Filed: August 25, 2021
    Publication date: July 7, 2022
    Inventors: John W. Taunton, Wendell A. Lim, Chia-Yung Wu
  • Patent number: 11136562
    Abstract: The present disclosure provides conditionally active, heterodimeric polypeptides. The conditionally active, heterodimeric polypeptides are active in the presence of a dimerizing agent that induces dimerization of the polypeptides of the heterodimer. A conditionally active, heterodimeric polypeptide of the present disclosure is useful in a variety of research and treatment methods, which are also provided.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: October 5, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: John W. Taunton, Wendell A. Lim, Chia-Yung Wu
  • Publication number: 20210206826
    Abstract: The present disclosure provides heteromeric, conditionally repressible synthetic immune cell receptors, nucleic acids expressing such receptors, cells expressing such nucleic acids and methods of making and using such receptors and nucleic acids. The present disclosure also provides methods of repressing immune cell activation attributable to a stimulatory synthetic immune cell receptor by dimerizing the stimulatory synthetic immune cell receptor with a synthetic immune cell repressor.
    Type: Application
    Filed: November 17, 2016
    Publication date: July 8, 2021
    Applicant: The Regents of the University of California
    Inventors: Wendell A. LIM, Kole T. ROYBAL, Chia-Yung WU, Jasper Z. WILLIAMS
  • Publication number: 20210196757
    Abstract: The present disclosure provides a heterodimeric, conditionally active chimeric antigen receptor (CAR), and a nucleic acid comprising a nucleotide sequence encoding the CAR. The present disclosure provides cells genetically modified to produce the CAR. A CAR of the present disclosure can be used in various methods, which are also provided.
    Type: Application
    Filed: December 8, 2020
    Publication date: July 1, 2021
    Inventors: Chia-Yung Wu, James Onuffer, Wendell A. Lim
  • Patent number: 10888581
    Abstract: The present disclosure provides a heterodimeric, conditionally active chimeric antigen receptor (CAR), and a nucleic acid comprising a nucleotide sequence encoding the CAR. The present disclosure provides cells genetically modified to produce the CAR. A CAR of the present disclosure can be used in various methods, which are also provided.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: January 12, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Chia-Yung Wu, James Onuffer, Wendell A. Lim
  • Publication number: 20200237824
    Abstract: The present disclosure provides a heterodimeric, conditionally active chimeric antigen receptor (CAR), and a nucleic acid comprising a nucleotide sequence encoding the CAR. The present disclosure provides cells genetically modified to produce the CAR. A CAR of the present disclosure can be used in various methods, which are also provided.
    Type: Application
    Filed: March 19, 2020
    Publication date: July 30, 2020
    Inventors: Chia-Yung Wu, James Onuffer, Wendell A. Lim
  • Patent number: 10632152
    Abstract: The present disclosure provides a heterodimeric, conditionally active chimeric antigen receptor (CAR), and a nucleic acid comprising a nucleotide sequence encoding the CAR. The present disclosure provides cells genetically modified to produce the CAR. A CAR of the present disclosure can be used in various methods, which are also provided.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: April 28, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Chia-Yung Wu, James Onuffer, Wendell A. Lim
  • Patent number: 10105391
    Abstract: The present disclosure provides a heterodimeric, conditionally active chimeric antigen receptor (CAR), and a nucleic acid comprising a nucleotide sequence encoding the CAR. The present disclosure provides cells genetically modified to produce the CAR. A CAR of the present disclosure can be used in various methods, which are also provided.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: October 23, 2018
    Assignee: The Regents of the University of California
    Inventors: Chia-Yung Wu, James Onuffer, Wendell A. Lim
  • Publication number: 20180085401
    Abstract: The present disclosure provides a heterodimeric, conditionally active chimeric antigen receptor (CAR), and a nucleic acid comprising a nucleotide sequence encoding the CAR. The present disclosure provides cells genetically modified to produce the CAR. A CAR of the present disclosure can be used in various methods, which are also provided.
    Type: Application
    Filed: December 7, 2017
    Publication date: March 29, 2018
    Inventors: Chia-Yung Wu, James Onuffer, Wendell A. Lim
  • Publication number: 20180042963
    Abstract: The present disclosure provides a heterodimeric, conditionally active chimeric antigen receptor (CAR), and a nucleic acid comprising a nucleotide sequence encoding the CAR. The present disclosure provides cells genetically modified to produce the CAR. A CAR of the present disclosure can be used in various methods, which are also provided.
    Type: Application
    Filed: November 1, 2017
    Publication date: February 15, 2018
    Inventors: Chia-Yung Wu, James Onuffer, Wendell A. Lim
  • Publication number: 20170340672
    Abstract: The present disclosure provides a heterodimeric, conditionally active chimeric antigen receptor (CAR), and a nucleic acid comprising a nucleotide sequence encoding the CAR. The present disclosure provides cells genetically modified to produce the CAR. A CAR of the present disclosure can be used in various methods, which are also provided.
    Type: Application
    Filed: August 4, 2017
    Publication date: November 30, 2017
    Inventors: Chia-Yung Wu, James Onuffer, Wendell A. Lim
  • Patent number: 9821012
    Abstract: The present disclosure provides a heterodimeric, conditionally active chimeric antigen receptor (CAR), and a nucleic acid comprising a nucleotide sequence encoding the CAR. The present disclosure provides cells genetically modified to produce the CAR. A CAR of the present disclosure can be used in various methods, which are also provided.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: November 21, 2017
    Assignee: The Regents of the University of California
    Inventors: Chia-Yung Wu, James Onuffer, Wendell A. Lim
  • Publication number: 20170306303
    Abstract: The present disclosure provides conditionally active, heterodimeric polypeptides. The conditionally active, heterodimeric polypeptides are active in the presence of a dimerizing agent that induces dimerization of the polypeptides of the heterodimer. A conditionally active, heterodimeric polypeptide of the present disclosure is useful in a variety of research and treatment methods, which are also provided.
    Type: Application
    Filed: June 21, 2017
    Publication date: October 26, 2017
    Inventors: John W. Taunton, Wendell A. Lim, Chia-Yung Wu
  • Publication number: 20170143765
    Abstract: The present disclosure provides a heterodimeric, conditionally active chimeric antigen receptor (CAR), and a nucleic acid comprising a nucleotide sequence encoding the CAR. The present disclosure provides cells genetically modified to produce the CAR. A CAR of the present disclosure can be used in various methods, which are also provided.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 25, 2017
    Inventors: Chia-Yung Wu, James Onuffer, Wendell A. Lim