Patents by Inventor Chiang-Cheng Chang

Chiang-Cheng Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8525348
    Abstract: A fabrication method of a chip scale package includes providing electronic components, each having an active surface with electrode pads and an opposite inactive surface, and a hard board with a soft layer disposed thereon; adhering the electronic components to the soft layer via the inactive surfaces thereof; pressing the electronic components such that the soft layer encapsulates the electronic components while exposing the active surfaces thereof; forming a dielectric layer on the active surfaces of the electronic components and the soft layer; and forming a first wiring layer on the dielectric layer and electrically connected to the electrode pads, thereby solving the conventional problems caused by directly attaching a chip on an adhesive film, such as film-softening, encapsulant overflow, warpage, chip deviation and contamination that lead to poor electrical connection between the electrode pads and the wiring layer formed in a subsequent RDL process and even waste product.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: September 3, 2013
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chiang-Cheng Chang, Chun-Chi Ke, Chien-Ping Huang
  • Publication number: 20130187285
    Abstract: A fabrication method of a semiconductor package includes the steps of: providing a carrier having a concave portion and a releasing layer formed on a surface thereof; disposing a chip on the releasing layer in the concave portion; forming an encapsulant on the chip and the releasing layer; removing the releasing layer and the carrier; and forming a circuit structure on the encapsulant and the chip. The design of the concave portion facilitates alignment of the chip to prevent it from displacement, thereby improving the product reliability. A semiconductor package fabricated by the fabrication method is also provided.
    Type: Application
    Filed: April 5, 2012
    Publication date: July 25, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Meng-Tsung Lee, Jung-Pang Huang, Shih-Kuang Chiu
  • Patent number: 8334174
    Abstract: A fabrication method of a chip scale package includes: disposing a chip on a carrier board and embedding the chip into a composite board having a hard layer and a soft layer; and removing the carrier board so as to perform a redistribution layer (RDL) process, thereby solving the conventional problems caused by directly attaching the chip on an adhesive film, such as film-softening caused by heat, encapsulant overflow, chip deviation and contamination, etc., all of which may result in poor electrical connection between the wiring layer and the chip electrode pads in the subsequent RDL process and even waste products as a result.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: December 18, 2012
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chiang-Cheng Chang, Hsin-Yi Liao, Hsu-Hsi Chang, Shih-Kuang Chiu
  • Publication number: 20120313243
    Abstract: A chip-scale package includes an encapsulating layer, a chip embedded in the encapsulating layer and having an active surface exposed from the encapsulating layer, a buffering dielectric layer formed on the encapsulating layer and the chip, a build-up dielectric layer formed on the buffering dielectric layer, and a circuit layer formed on the build-up dielectric layer and having conductive blind vias penetrating the build-up dielectric layer and being in communication with the openings of the buffering dielectric layer and electrically connected to the chip, wherein the build-up dielectric layer and the buffering dielectric layer are made of different materials. Therefore, delamination does not occur between the buffering dielectric layer and the encapsulating layer, because the buffering dielectric layer is securely bonded to the encapsulating layer and the buffering dielectric layer is evenly distributed on the encapsulating layer.
    Type: Application
    Filed: August 30, 2011
    Publication date: December 13, 2012
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Hung-Wen Liu, Hsi-Chang Hsu, Hsin-Yi Liao, Shih-Kuang Chiu
  • Patent number: 8304665
    Abstract: A package substrate having landless conductive traces is proposed, which includes a core layer with a plurality of plated through holes formed therein, and a plurality of conductive traces formed on at least a surface of the core layer. Each of the conductive traces has a connection end, a bond pad end, and a base body connecting the connection end and the bond pad end, the conductive trace is electrically connected to a corresponding one of the plated through holes through the connection end, and the connection end has a width greater than that of the base body but not greater than the diameter of the plated through hole, thereby increasing the contact area between the conductive trace and the plated through hole and preventing the contact surface of the conductive trace with the plated through hole from cracking.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: November 6, 2012
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chiang-Cheng Chang, Yen-Ping Wang, Don-Son Jiang, Jeng-Yuan Lai, Yu-Po Wang
  • Publication number: 20120086117
    Abstract: A package embedded with a chip and a method of fabricating the package of embedded chip. The package of embedded chip includes a dielectric layer having a first surface and a second surface opposing the first surface; a plurality of conductive pillars formed in the dielectric layer and exposed from the second surface of the dielectric layer; a chip embedded in the dielectric layer; a circuit layer formed on the first surface of the dielectric layer; a plurality of conductive blind vias formed in the dielectric layer, allowing the circuit layer to be electrically connected via the conductive blind vias to the chip and each of the conductive pillars; and a first solder mask layer formed on the first surface of the dielectric layer and the circuit layer, thereby using conductive pillars to externally connect with other electronic devices as required to form a stacked structure. Therefore, the manufacturing process can be effectively simplified.
    Type: Application
    Filed: December 10, 2010
    Publication date: April 12, 2012
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Hsin-Yi Liao, Shih-Kuang Chiu
  • Publication number: 20120061825
    Abstract: A chip scale package and a method of fabricating the chip scale package. The chip scale package includes a encapsulant having a first surface and a second surface opposing the first surface; a conductive pillar formed in the encapsulant and exposed from the first surface and the second surface; a chip embedded in the encapsulant while exposed from the first surface; a dielectric layer formed on the first surface, the conductive pillar and the chip; a circuit layer formed on the dielectric layer; a plurality of conductive blind vias formed in the dielectric layer electrically connecting the circuit layer, electrode pads and the conductive pillar; and a solder mask layer formed on the dielectric layer and the circuit layer, thereby using conductive pillars to externally connect with other electronic devices as required to form a stacked structure.
    Type: Application
    Filed: October 18, 2010
    Publication date: March 15, 2012
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Chien-Ping Huang, Chun-Chi Ke
  • Publication number: 20120038044
    Abstract: A CSP includes: a hard board having a first wiring layer with conductive pads; a plurality of conductive elements disposed on at least a portion of the conductive pads; an electronic component having opposite active and inactive surfaces and being mounted on the hard board via the inactive surface; an encapsulating layer disposed on the hard board for encapsulating the conductive elements and electronic component, the active surface of the electronic component and the surfaces of the conductive elements being exposed through the encapsulating layer; a first dielectric layer and a third wiring layer disposed on the encapsulating layer, the third wiring layer being electrically connected to the conductive elements and the electronic component and further electrically connected to the first wiring layer through the conductive elements, thereby obtaining a stacked connection structure without the need of PTHs and using the hard board as a main structure to avoid warpage.
    Type: Application
    Filed: December 2, 2010
    Publication date: February 16, 2012
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Chien-Ping Huang, Chun-Chi Ke, Hsin-Yi Liao, Hsi-Chang Hsu
  • Publication number: 20120032347
    Abstract: A fabrication method of a chip scale package includes providing electronic components, each having an active surface with electrode pads and an opposite inactive surface, and a hard board with a soft layer disposed thereon; adhering the electronic components to the soft layer via the inactive surfaces thereof; pressing the electronic components such that the soft layer encapsulates the electronic components while exposing the active surfaces thereof; forming a dielectric layer on the active surfaces of the electronic components and the soft layer; and forming a first wiring layer on the dielectric layer and electrically connected to the electrode pads, thereby solving the conventional problems caused by directly attaching a chip on an adhesive film, such as film-softening, encapsulant overflow, warpage, chip deviation and contamination that lead to poor electrical connection between the electrode pads and the wiring layer formed in a subsequent RDL process and even waste product.
    Type: Application
    Filed: December 17, 2010
    Publication date: February 9, 2012
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Chun-Chi Ke, Chien-Ping Huang
  • Publication number: 20120018870
    Abstract: A fabrication method of a chip scale package includes: disposing a chip on a carrier board and embedding the chip into a composite board having a hard layer and a soft layer; and removing the carrier board so as to perform a redistribution layer (RDL) process, thereby solving the conventional problems caused by directly attaching the chip on an adhesive film, such as film-softening caused by heat, encapsulant overflow, chip deviation and contamination, etc., all of which may result in poor electrical connection between the wiring layer and the chip electrode pads in the subsequent RDL process and even waste products as a result.
    Type: Application
    Filed: August 24, 2010
    Publication date: January 26, 2012
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Hsin-Yi Liao, Hsu-His Chang, Shih-Kuang Chiu
  • Publication number: 20120013006
    Abstract: A fabrication method of a chip scale package is provided, which includes forming a protection layer on the active surface of a chip and fixing the inactive surface of the chip to a transparent carrier; performing a molding process; removing the protection layer from the chip and performing a redistribution layer (RDL) process, thereby solving the conventional problems caused by directly attaching the chip on an adhesive film, such as film-softening caused by heat, encapsulant overflow, warpage, chip deviation and contamination that lead to poor electrical connection between the wiring layer formed in the RDL process and the chip electrode pads and even waste product as a result. Further, the transparent carrier employed in the invention can be separated by laser and repetitively used in the process to help reduce the fabrication cost.
    Type: Application
    Filed: November 29, 2010
    Publication date: January 19, 2012
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Chien-Ping Huang, Chun-Chi Ke
  • Publication number: 20120001328
    Abstract: A chip-sized package and a fabrication method thereof are provided. The method includes forming a protection layer on an active surface of a chip and attaching a non-active surface of the chip to a carrier made of a hard material; performing a molding process and removing a protection layer from the chip; performing an RDL process to prevent problems as encountered in the prior art, such as softening of adhesive films, an encapsulant overflow, a pliable chip and chip deviation or contamination caused by directly adhering the active surface of the chip to the adhesive film that may even lead to inferior electrical contacts between a circuit layer and a plurality of chip bond pads during subsequent RDL process, and cause the package to be scraped. Further, the carrier employed in this invention can be repetitively used in the process to help reduce manufacturing costs.
    Type: Application
    Filed: December 14, 2010
    Publication date: January 5, 2012
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Chien-Ping Huang, Chun-Chi Ke
  • Publication number: 20090283303
    Abstract: A package substrate having landless conductive traces is proposed, which includes a core layer with a plurality of plated through holes formed therein, and a plurality of conductive traces formed on at least a surface of the core layer. Each of the conductive traces has a connection end, a bond pad end, and a base body connecting the connection end and the bond pad end, the conductive trace is electrically connected to a corresponding one of the plated through holes through the connection end, and the connection end has a width greater than that of the base body but not greater than the diameter of the plated through hole, thereby increasing the contact area between the conductive trace and the plated through hole and preventing the contact surface of the conductive trace with the plated through hole from cracking.
    Type: Application
    Filed: November 7, 2008
    Publication date: November 19, 2009
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Yen-Ping Wang, Don-Son Jiang, Jeng-Yuan Lai, Yu-Po Wang
  • Publication number: 20060049516
    Abstract: A nickel/gold (Ni/Au) pad structure of a semiconductor package and a fabrication method thereof are provided. The fabrication method includes preparing a core layer; forming a conductive trace layer on the core layer; patterning the conductive trace layer to form at least one pad of the conductive trace layer; applying a conductive layer; forming a photoresist layer to define a predetermined plating region on the pad, wherein the predetermined plating region is smaller in area than the pad; forming a Ni/Au layer on the predetermined plating region; removing the photoresist layer and etching away the conductive layer; and applying a solder mask layer and forming at least one opening in the solder mask layer to expose the pad, wherein the opening is larger in area than the Ni/Au layer. The Ni/Au pad structure fabricated by the above method can prevent a solder extrusion effect incurred in the conventional technology.
    Type: Application
    Filed: June 3, 2005
    Publication date: March 9, 2006
    Applicant: Siliconware Precision Industries Co., Ltd.
    Inventors: Yu-Po Wang, Chiang-Cheng Chang, Chien-Te Chen