Patents by Inventor Chiao-fe Shu

Chiao-fe Shu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10089551
    Abstract: Embodiments are directed to an object detection system having at least one processor circuit configured to receive a series of image regions and apply to each image region in the series a detector, which is configured to determine a presence of a predetermined object in the image region. The object detection system performs a method of selecting and applying the detector from among a plurality of foreground detectors and a plurality of background detectors in a repeated pattern that includes sequentially selecting a selected one of the plurality of foreground detectors; sequentially applying the selected one of the plurality of foreground detectors to one of the series of image regions until all of the plurality of foreground detectors have been applied; selecting a selected one of the plurality of background detectors; and applying the selected one of the plurality of background detectors to one of the series of image regions.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: October 2, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Russell P. Bobbitt, Rogerio S. Feris, Chiao-Fe Shu, Yun Zhai
  • Patent number: 10078693
    Abstract: A data indexing system and method includes acquiring activity data in a context and indexing the activity data in accordance with contextual conditions. The activity data is stored in accordance with indices. An event is correlated with the activity data by using the indices to review the activity data in the context.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: September 18, 2018
    Assignee: International Business Machines Corporation
    Inventors: Lisa Marie Brown, Arun Hampapur, Zuoxuan Lu, Sharathchandra U. Pankanti, Andrew William Senior, Chiao-Fe Shu, Ying-Li Tian
  • Patent number: 10007991
    Abstract: A system for detecting a change in object positioning by processing images by detecting a first entity tagged with a first visually unique identifier, and detecting a second entity tagged with a second visually unique identifier distinguishable from the first visually unique identifier. The system receives a first image, from a first image capturing device, containing the first visually unique identifier and the second visually unique identifier. The system analyzes the first image to determine a distance between the first visually unique identifier and the second visually unique identifier. The system receives a second image containing the first visually unique identifier. The system analyzes the second image to determine a location of the second visually unique identifier relative to the first visually unique identifier to form a distance assessment. Based on the distance assessment, the system determines a change in proximity between the first entity and the second entity.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: June 26, 2018
    Assignee: International Business Machines Corporation
    Inventors: Bruce H. Hyre, Chiao-Fe Shu, Yun Zhai
  • Patent number: 9946951
    Abstract: Embodiments are directed to an object detection system having at least one processor circuit configured to receive a series of image regions and apply to each image region in the series a detector, which is configured to determine a presence of a predetermined object in the image region. The object detection system performs a method of selecting and applying the detector from among a plurality of foreground detectors and a plurality of background detectors in a repeated pattern that includes sequentially selecting a selected one of the plurality of foreground detectors; sequentially applying the selected one of the plurality of foreground detectors to one of the series of image regions until all of the plurality of foreground detectors have been applied; selecting a selected one of the plurality of background detectors; and applying the selected one of the plurality of background detectors to one of the series of image regions.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: April 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Russell P. Bobbitt, Rogerio S. Feris, Chiao-Fe Shu, Yun Zhai
  • Patent number: 9883193
    Abstract: An approach for generating a coding schema for identifying a spatial location of an event within video image data is provided. In one embodiment, there is a spatial representation tool, including a compression component configured to receive trajectory data of a trajectory of an object for an event within video image data; generate a lossless compressed contour-coded blob to encode the trajectory data of the trajectory of the object for the event within video image data; generate a lossy searchable code of the trajectory of the object for the event within the video image data; convert a region of interest within the video image data to a lossy query code, the region of interest corresponding to a sub-section of a visual display output of the video image data; and compare the lossy query code to the lossy searchable code within a relational database to identify a corresponding lossless trajectory data of the trajectory of the object for the event within the video image data.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: January 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Michael J. Desimone, Arun Hampapur, Zuoxuan Lu, Carl P. Mercier, Christopher S. Milite, Stephen R. Russo, Chiao-Fe Shu, Chek K. Tan
  • Patent number: 9729834
    Abstract: An invention for identifying a spatial location of an event within video image data is provided. Disclosed are embodiments for detecting an object and obtaining trajectory data of a trajectory of the object within the video image data from a sensor device; converting the trajectory data into a contour-coded compressed image; generating, based on the trajectory data, a searchable code that contains a set of locations traversed by the trajectory of the object within the video image; associating the searchable code with the contour-coded compressed image in a database; and returning, in response to a query having a selected location that corresponds a location of the set of locations in the searchable code, an image of the trajectory data corresponding to the object based on the contour-coded compressed image in the database.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: August 8, 2017
    Assignee: International Business Machines Corporation
    Inventors: Michael J. Desimone, Arun Hampapur, Zuoxuan Lu, Carl P. Mercier, Christopher S. Milite, Stephen R. Russo, Chiao-Fe Shu, Chek K. Tan
  • Publication number: 20170221192
    Abstract: A system for detecting a change in object positioning by processing images by detecting a first entity tagged with a first visually unique identifier, and detecting a second entity tagged with a second visually unique identifier distinguishable from the first visually unique identifier. The system receives a first image, from a first image capturing device, containing the first visually unique identifier and the second visually unique identifier. The system analyzes the first image to determine a distance between the first visually unique identifier and the second visually unique identifier. The system receives a second image containing the first visually unique identifier. The system analyzes the second image to determine a location of the second visually unique identifier relative to the first visually unique identifier to form a distance assessment. Based on the distance assessment, the system determines a change in proximity between the first entity and the second entity.
    Type: Application
    Filed: January 29, 2016
    Publication date: August 3, 2017
    Applicant: International Business Machines Corporation
    Inventors: Bruce H. HYRE, Chiao-Fe SHU, Yun ZHAI
  • Publication number: 20170046587
    Abstract: Embodiments are directed to an object detection system having at least one processor circuit configured to receive a series of image regions and apply to each image region in the series a detector, which is configured to determine a presence of a predetermined object in the image region. The object detection system performs a method of selecting and applying the detector from among a plurality of foreground detectors and a plurality of background detectors in a repeated pattern that includes sequentially selecting a selected one of the plurality of foreground detectors; sequentially applying the selected one of the plurality of foreground detectors to one of the series of image regions until all of the plurality of foreground detectors have been applied; selecting a selected one of the plurality of background detectors; and applying the selected one of the plurality of background detectors to one of the series of image regions.
    Type: Application
    Filed: December 8, 2015
    Publication date: February 16, 2017
    Inventors: Russell P. Bobbitt, Rogerio S. Feris, Chiao-Fe Shu, Yun Zhai
  • Publication number: 20170046596
    Abstract: Embodiments are directed to an object detection system having at least one processor circuit configured to receive a series of image regions and apply to each image region in the series a detector, which is configured to determine a presence of a predetermined object in the image region. The object detection system performs a method of selecting and applying the detector from among a plurality of foreground detectors and a plurality of background detectors in a repeated pattern that includes sequentially selecting a selected one of the plurality of foreground detectors; sequentially applying the selected one of the plurality of foreground detectors to one of the series of image regions until all of the plurality of foreground detectors have been applied; selecting a selected one of the plurality of background detectors; and applying the selected one of the plurality of background detectors to one of the series of image regions.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 16, 2017
    Inventors: Russell P. Bobbitt, Rogerio S. Feris, Chiao-Fe Shu, Yun Zhai
  • Publication number: 20160360156
    Abstract: An invention for identifying a spatial location of an event within video image data is provided. Disclosed are embodiments for detecting an object and obtaining trajectory data of a trajectory of the object within the video image data from a sensor device; converting the trajectory data into a contour-coded compressed image; generating, based on the trajectory data, a searchable code that contains a set of locations traversed by the trajectory of the object within the video image; associating the searchable code with the contour-coded compressed image in a database; and returning, in response to a query having a selected location that corresponds a location of the set of locations in the searchable code, an image of the trajectory data corresponding to the object based on the contour-coded compressed image in the database.
    Type: Application
    Filed: August 22, 2016
    Publication date: December 8, 2016
    Inventors: Michael J. Desimone, Arun Hampapur, Zuoxuan Lu, Carl P. Mercier, Christopher S. Milite, Stephen R. Russo, Chiao-Fe Shu, Chek K. Tan
  • Patent number: 9503693
    Abstract: An invention for identifying a spatial location of an event within video image data is provided. Disclosed are embodiments for detecting an object and obtaining trajectory data of a trajectory of the object within the video image data from a sensor device; converting the trajectory data into a contour-coded compressed image; generating, based on the trajectory data, a searchable code that contains a set of locations traversed by the trajectory of the object within the video image; associating the searchable code with the contour-coded compressed image in a database; and returning, in response to a query having a selected location that corresponds a location of the set of locations in the searchable code, an image of the trajectory data corresponding to the object based on the contour-coded compressed image in the database.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: November 22, 2016
    Assignee: International Business Machines Corporation
    Inventors: Michael J. Desimone, Arun Hampapur, Zuoxuan Lu, Carl P. Mercier, Christopher S. Milite, Stephen R. Russo, Chiao-Fe Shu, Chek K. Tan
  • Publication number: 20160249063
    Abstract: An approach for generating a coding schema for identifying a spatial location of an event within video image data is provided. In one embodiment, there is a spatial representation tool, including a compression component configured to receive trajectory data of a trajectory of an object for an event within video image data; generate a lossless compressed contour-coded blob to encode the trajectory data of the trajectory of the object for the event within video image data; generate a lossy searchable code of the trajectory of the object for the event within the video image data; convert a region of interest within the video image data to a lossy query code, the region of interest corresponding to a sub-section of a visual display output of the video image data; and compare the lossy query code to the lossy searchable code within a relational database to identify a corresponding lossless trajectory data of the trajectory of the object for the event within the video image data.
    Type: Application
    Filed: May 3, 2016
    Publication date: August 25, 2016
    Inventors: Michael J. Desimone, Arun Hampapur, Zuoxuan Lu, Carl P. Mercier, Christopher S. Milite, Stephen R. Russo, Chiao-Fe Shu, Chek K. Tan
  • Patent number: 9380271
    Abstract: An approach for generating a coding schema for identifying a spatial location of an event within video image data is provided. In one embodiment, there is a spatial representation tool, including a compression component configured to receive trajectory data of a trajectory of an object for an event within video image data; generate a lossless compressed contour-coded blob to encode the trajectory data of the trajectory of the object for the event within video image data; generate a lossy searchable code of the trajectory of the object for the event within the video image data; convert a region of interest within the video image data to a lossy query code, the region of interest corresponding to a sub-section of a visual display output of the video image data; and compare the lossy query code to the lossy searchable code within a relational database to identify a corresponding lossless trajectory data of the trajectory of the object for the event within the video image data.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: June 28, 2016
    Assignee: International Business Machines Corporation
    Inventors: Michael J. Desimone, Arun Hampapur, Zuoxuan Lu, Carl P. Mercier, Christopher S. Milite, Stephen R. Russo, Chiao-Fe Shu, Chek K. Tan
  • Patent number: 9342594
    Abstract: An approach that indexes and searches according to a set of attributes of a person is provided. In one embodiment, there is an extensible indexing and search tool, including an extraction component configured to extract a set of attributes of a person monitored by a set of sensors in a zone of interest. An index component is configured to index each of the set of attributes of the person within an index of an extensible indexing and search tool. A search component is configured to enable a search of the index of the extensible indexing and search tool according to at least one of the set of attributes of the person.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: May 17, 2016
    Assignee: International Business Machines Corporation
    Inventors: Lisa M. Brown, Raymond A. Cooke, Rogerio S. Feris, Arun Hampapur, Frederik C. M. Kjeldsen, Christopher S. Milite, Stephen R. Russo, Chiao-Fe Shu, Ying-li Tian, Yun Zhai, Zuoxuan Lu
  • Publication number: 20160014378
    Abstract: An invention for identifying a spatial location of an event within video image data is provided. Disclosed are embodiments for detecting an object and obtaining trajectory data of a trajectory of the object within the video image data from a sensor device; converting the trajectory data into a contour-coded compressed image; generating, based on the trajectory data, a searchable code that contains a set of locations traversed by the trajectory of the object within the video image; associating the searchable code with the contour-coded compressed image in a database; and returning, in response to a query having a selected location that corresponds a location of the set of locations in the searchable code, an image of the trajectory data corresponding to the object based on the contour-coded compressed image in the database.
    Type: Application
    Filed: September 24, 2015
    Publication date: January 14, 2016
    Inventors: Michael J. Desimone, Arun Hampapur, Zuoxuan Lu, Carl P. Mercier, Christopher S. Milite, Stephen R. Russo, Chiao-Fe Shu, Chek K. Tan
  • Patent number: 9189688
    Abstract: An invention for identifying a spatial location of an event within video image data is provided. Disclosed are embodiments for detecting an object and obtaining trajectory data of a trajectory of the object within the video image data from a sensor device; converting the trajectory data into a contour-coded compressed image; generating, based on the trajectory data, a searchable code that contains a set of locations traversed by the trajectory of the object within the video image; associating the searchable code with the contour-coded compressed image in a database; and returning, in response to a query having a selected location that corresponds a location of the set of locations in the searchable code, an image of the trajectory data corresponding to the object based on the contour-coded compressed image in the database.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: November 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Michael J. Desimone, Arun Hampapur, Zuoxuan Lu, Carl P. Mercier, Christopher S. Milite, Stephen R. Russo, Chiao-Fe Shu, Chek K. Tan
  • Patent number: 9183716
    Abstract: An approach that manages moving surveillance cameras is described. In one embodiment, there is a system for managing images generated from a movable camera. In this embodiment, the system comprises a motion estimation component configured to determine camera motion. A camera motion alert component is configured to generate an alert in response to a determination that the camera has moved or the camera has ceased moving.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: November 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jonathan H. Connell, II, Arun Hampapur, Andrew W. Senior, Chiao-Fe Shu, Ying-Li Tian
  • Publication number: 20150161453
    Abstract: An invention for identifying a spatial location of an event within video image data is provided. Disclosed are embodiments for detecting an object and obtaining trajectory data of a trajectory of the object within the video image data from a sensor device; converting the trajectory data into a contour-coded compressed image; generating, based on the trajectory data, a searchable code that contains a set of locations traversed by the trajectory of the object within the video image; associating the searchable code with the contour-coded compressed image in a database; and returning, in response to a query having a selected location that corresponds a location of the set of locations in the searchable code, an image of the trajectory data corresponding to the object based on the contour-coded compressed image in the database.
    Type: Application
    Filed: January 13, 2015
    Publication date: June 11, 2015
    Inventors: Michael J. Desimone, Arun Hampapur, Zuoxuan Lu, Carl P. Mercier, Christopher S. Milite, Stephen R. Russo, Chiao-Fe Shu, Chek K. Tan
  • Patent number: 8971580
    Abstract: An invention for identifying a spatial location of an event within video image data is provided. Disclosed are embodiments for generating trajectory data of a trajectory of an object for a plurality of pixel regions of an area of interest within video image data, the generating comprising: identifying one or more pixel regions from the plurality of pixel regions containing trajectory data; performing a multi-point neighborhood scan within the one or more pixel regions from the plurality of pixel regions containing trajectory data; and generating a transition chain code based on the multi-point neighborhood scan. Embodiments further generate a set of compressed spatial representations of the trajectory data of the trajectory of the object for an event based on the transition chain code, and generate a lossless contour code of the trajectory data of the trajectory of the object for the event based on the transition chain code.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Michael J. Desimone, Arun Hampapur, Zuoxuan Lu, Carl P. Mercier, Christopher S. Milite, Stephen R. Russo, Chiao-Fe Shu, Chek K. Tan
  • Patent number: 8965042
    Abstract: The present invention relates to the measurement of human activities through video, particularly in retail environments. A method for measuring retail display effectiveness in accordance with an embodiment of the present invention includes: detecting a moving object in a field of view of an imaging device, the imaging device obtaining image data of a product display; tracking the object in the field of view of the imaging device to obtain a track; and obtaining statistics for the track with regard to the product display.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Sergio Borger, Christopher R. Carlson, Arun Hampapur, Andrew W. Senior, Chiao-Fe Shu