Patents by Inventor Chidambaram Gunanathan

Chidambaram Gunanathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9738685
    Abstract: A process for preparing amides by reacting a primary amine and a primary alcohol in the presence of a Ruthenium complex to generate the amide and molecular hydrogen. Primary amines are directly acylated by equimolar amounts of alcohols to produce amides and molecular hydrogen (the only byproduct) in high yields and high turnover numbers. Also disclosed are processes for hydrogenation of amides to alcohols and amines; hydrogenation of organic carbonates to alcohols; hydrogenation of carbamates or urea derivatives to alcohols and amines; amidation of esters; acylation of alcohols using esters; coupling of alcohols with water and a base to form carboxylic acids; dehydrogenation of beta-amino alcohols to form pyrazines and cyclic dipeptides; and dehydrogenation of secondary alcohols to ketones. These reactions are catalyzed by a Ruthenium complex which is based on a dearomatized PNN-type ligand of formula A1 or precursors thereof of formulae A2 or A3.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: August 22, 2017
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: David Milstein, Chidambaram Gunanathan, Yehoshua Ben-David, Ekambaram Balaraman, Boopathy Gnanaprakasam, Jing Zhang
  • Publication number: 20170107251
    Abstract: The present invention relates to novel Ruthenium complexes and related borohydride complexes, and their use for (1) hydrogenation of amides (including polyamides) to alcohols and amines; (2) preparing amides from alcohols with amines (including preparing polyamides (e.g., polypeptides) by reacting dialcohols and diamines or by polymerization of amino alcohols); (3) hydrogenation of esters to alcohols (including hydrogenation of cyclic esters (lactones), cyclic di-esters (di-lactones) or polyesters); (4) hydrogenation of organic carbonates (including polycarbonates) to alcohols and of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (5) dehydrogenative coupling of alcohols to esters; (6) hydrogenation of secondary alcohols to ketones; (7) amidation of esters (synthesis of amides from esters and amines); (8) acylation of alcohols using esters; (9) coupling of alcohols with water to form carboxylic acids; and (10) dehydrogenation of beta-amino alcohols to form pyrazines.
    Type: Application
    Filed: November 18, 2016
    Publication date: April 20, 2017
    Inventors: David MILSTEIN, Ekambaram Balaraman, Chidambaram Gunanathan, Boopathy Gnanaprakasam, Jing Zhang
  • Publication number: 20160152663
    Abstract: A process for preparing amides by reacting a primary amine and a primary alcohol in the presence of a Ruthenium complex to generate the amide and molecular hydrogen. Primary amines are directly acylated by equimolar amounts of alcohols to produce amides and molecular hydrogen (the only byproduct) in high yields and high turnover numbers. Also disclosed are processes for hydrogenation of amides to alcohols and amines; hydrogenation of organic carbonates to alcohols; hydrogenation of carbamates or urea derivatives to alcohols and amines; amidation of esters; acylation of alcohols using esters; coupling of alcohols with water and a base to form carboxylic acids; dehydrogenation of beta-amino alcohols to form pyrazines and cyclic dipeptides; and dehydrogenation of secondary alcohols to ketones. These reactions are catalyzed by a Ruthenium complex which is based on a dearomatized PNN-type ligand of formula A1 or precursors thereof of formulae A2 or A3.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 2, 2016
    Inventors: David MILSTEIN, Chidambaram GUNANATHAN, Yehoshua BEN-DAVID, Ekambaram BALARAMAN, Boopathy GNANAPRAKASAM, Jing ZHANG
  • Patent number: 9290441
    Abstract: A process for preparing amides by reacting a primary amine and a primary alcohol in the presence of a Ruthenium complex to generate the amide and molecular hydrogen. Primary amines are directly acylated by equimolar amounts of alcohols to produce amides and molecular hydrogen (the only byproduct) in high yields and high turnover numbers. Also disclosed are processes for hydrogenation of amides to alcohols and amines; hydrogenation of organic carbonates to alcohols; hydrogenation of carbamates or urea derivatives to alcohols and amines; amidation of esters; acylation of alcohols using esters; coupling of alcohols with water and a base to form carboxylic acids; dehydrogenation of beta-amino alcohols to form pyrazines and cyclic dipeptides; and dehydrogenation of secondary alcohols to ketones. These reactions are catalyzed by a Ruthenium complex which is based on a dearomatized PNN-type ligand of formula A1 or precursors thereof of formulae A2 or A3.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: March 22, 2016
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: David Milstein, Chidambaram Gunanathan, Yehoshua Ben-David, Ekambaram Balaraman, Boopathy Gnanaprakasam, Jing Zhang
  • Publication number: 20150284417
    Abstract: The present invention relates to novel Ruthenium complexes and related borohydride complexes, and their use for (1) hydrogenation of amides (including polyamides) to alcohols and amines; (2) preparing amides from alcohols with amines (including preparing polyamides (e.g., polypeptides) by reacting dialcohols and diamines or by polymerization of amino alcohols); (3) hydrogenation of esters to alcohols (including hydrogenation of cyclic esters (lactones), cyclic di-esters (di-lactones) or polyesters); (4) hydrogenation of organic carbonates (including polycarbonates) to alcohols and of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (5) dehydrogenative coupling of alcohols to esters; (6) hydrogenation of secondary alcohols to ketones; (7) amidation of esters (synthesis of amides from esters and amines); (8) acylation of alcohols using esters; (9) coupling of alcohols with water to form carboxylic acids; and (10) dehydrogenation of beta-amino alcohols to form pyrazines.
    Type: Application
    Filed: May 1, 2015
    Publication date: October 8, 2015
    Inventors: David MILSTEIN, Ekambaram BALARAMAN, Chidambaram GUNANATHAN, Boopathy GNANAPRAKASAM, Jing ZHANG
  • Patent number: 9045381
    Abstract: The present invention relates to novel Ruthenium catalysts and related borohydride complexes, and the use of such catalysts, inter alia, for (1) hydrogenation of amides (including polyamides) to alcohols and amines; (2) preparing amides from alcohols with amines (including the preparation of polyamides (e.g., polypeptides) by reacting dialcohols and diamines and/or by polymerization of amino alcohols); (3) hydrogenation of esters to alcohols (including hydrogenation of cyclic esters (lactones) or cyclic di-esters (di-lactones) or polyesters); (4) hydrogenation of organic carbonates (including polycarbonates) to alcohols and hydrogenation of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (5) dehydrogenative coupling of alcohols to esters; (6) hydrogenation of secondary alcohols to ketones; (7) amidation of esters (i.e.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: June 2, 2015
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: David Milstein, Ekambaram Balaraman, Chidambaram Gunanathan, Boopathy Gnanaprakasam, Jing Zhang
  • Patent number: 8889865
    Abstract: The present invention provides novel ruthenium based catalysts, and a process for preparing amines, by reacting a primary alcohol and ammonia in the presence of such catalysts, to generate the amine and water. According to the process of the invention, primary alcohols react directly with ammonia to produce primary amines and water in high yields and high turnover numbers. This reaction is catalyzed by novel ruthenium complexes, which are preferably composed of quinolinyl or acridinyl based pincer ligands.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: November 18, 2014
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: David Milstein, Chidambaram Gunanathan
  • Publication number: 20140288306
    Abstract: The present invention provides novel ruthenium based catalysts, and a process for preparing amines, by reacting a primary alcohol and ammonia in the presence of such catalysts, to generate the amine and water. According to the process of the invention, primary alcohols react directly with ammonia to produce primary amines and water in high yields and high turnover numbers. This reaction is catalyzed by novel ruthenium complexes, which are preferably composed of quinolinyl or acridinyl based pincer ligands.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Inventors: David Milstein, Chidambaram Gunanathan
  • Patent number: 8779136
    Abstract: The present invention provides novel ruthenium based catalysts, and a process for preparing amines, by reacting a primary alcohol and ammonia in the presence of such catalysts, to generate the amine and water. According to the process of the invention, primary alcohols react directly with ammonia to produce primary amines and water in high yields and high turnover numbers. This reaction is catalyzed by novel ruthenium complexes, which are preferably composed of quinolinyl or acridinyl based pincer ligands.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: July 15, 2014
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: David Milstein, Chidambaram Gunanathan
  • Publication number: 20140046065
    Abstract: The present invention provides novel ruthenium based catalysts, and a process for preparing amines, by reacting a primary alcohol and ammonia in the presence of such catalysts, to generate the amine and water. According to the process of the invention, primary alcohols react directly with ammonia to produce primary amines and water in high yields and high turnover numbers. This reaction is catalyzed by novel ruthenium complexes, which are preferably composed of quinolinyl or acridinyl based pincer ligands.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Applicant: YEDA RESEARCH AND DEVELOPMENT CO. LTD.
    Inventors: David Milstein, Chidambaram Gunanathan
  • Patent number: 8586742
    Abstract: The present invention provides novel ruthenium based catalysts, and a process for preparing amines, by reacting a primary alcohol and ammonia in the presence of such catalysts, to generate the amine and water. According to the process of the invention, primary alcohols react directly with ammonia to produce primary amines and water in high yields and high turnover numbers. This reaction is catalyzed by novel ruthenium complexes, which are preferably composed of quinolinyl or acridinyl based pincer ligands.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: November 19, 2013
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: David Milstein, Chidambaram Gunanathan
  • Publication number: 20130281664
    Abstract: The present invention relates to novel Ruthenium catalysts and related borohydride complexes, and the use of such catalysts, inter alia, for (1) hydrogenation of amides (including polyamides) to alcohols and amines; (2) preparing amides from alcohols with amines (including the preparation of polyamides (e.g., polypeptides) by reacting dialcohols and diamines and/or by polymerization of amino alcohols); (3) hydrogenation of esters to alcohols (including hydrogenation of cyclic esters (lactones) or cyclic di-esters (di-lactones) or polyesters); (4) hydrogenation of organic carbonates (including polycarbonates) to alcohols and hydrogenation of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (5) dehydrogenative coupling of alcohols to esters; (6) hydrogenation of secondary alcohols to ketones; (7) amidation of esters (i.e.
    Type: Application
    Filed: October 11, 2011
    Publication date: October 24, 2013
    Inventors: David Milstein, Ekambaram Balaraman, Chidambaram Gunanathan, Boopathy Gnanaprakasam, Jing Zhang
  • Publication number: 20120253042
    Abstract: A process for preparing amides by reacting a primary amine and a primary alcohol in the presence of a Ruthenium complex to generate the amide and molecular hydrogen. Primary amines are directly acylated by equimolar amounts of alcohols to produce amides and molecular hydrogen (the only byproduct) in high yields and high turnover numbers. Also disclosed are processes for hydrogenation of amides to alcohols and amines; hydrogenation of organic carbonates to alcohols; hydrogenation of carbamates or urea derivatives to alcohols and amines; amidation of esters; acylation of alcohols using esters; coupling of alcohols with water and a base to form carboxylic acids; dehydrogenation of beta-amino alcohols to form pyrazines and cyclic dipeptides; and dehydrogenation of secondary alcohols to ketones. These reactions are catalyzed by a Ruthenium complex which is based on a dearomatized PNN-type ligand of formula A1 or precursors thereof of formulae A2 or A3.
    Type: Application
    Filed: May 14, 2012
    Publication date: October 4, 2012
    Applicant: YEDA RESEARCH AND DEVELOPMENT CO. LTD.
    Inventors: David Milstein, Chidambaram Gunanathan, Yehoshua Ben-David, Ekambaram Balaraman, Boopathy Gnanaprakasam, Jing Zhang
  • Patent number: 8178723
    Abstract: The present invention provides a process for preparing amides, by reacting a primary amine and a primary alcohol in the presence of a Ruthenium catalyst, to generate the amide and molecular hydrogen. According to the process of the invention, primary amines are directly acylated by equimolar amounts of alcohols to produce amides and molecular hydrogen (the only byproduct) in high yields and high turnover numbers. This reaction is catalyzed by a Ruthenium complex, which is preferably based on a dearomatized PNN-type ligand of formula A1 or precursors thereof of formulae A2 or A3. Use of diamines in the reaction leads to bis-amides, whereas with a mixed primary/secondary amine substrate, chemoselective acylation of the primary amine group occurs.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: May 15, 2012
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: David Milstein, Chidambaram Gunanathan, Yehoshua Ben-David
  • Publication number: 20110152525
    Abstract: The present invention provides novel ruthenium based catalysts, and a process for preparing amines, by reacting a primary alcohol and ammonia in the presence of such catalysts, to generate the amine and water. According to the process of the invention, primary alcohols react directly with ammonia to produce primary amines and water in high yields and high turnover numbers. This reaction is catalyzed by novel ruthenium complexes, which are preferably composed of quinolinyl or acridinyl based pincer ligands.
    Type: Application
    Filed: August 10, 2009
    Publication date: June 23, 2011
    Applicant: Yeda Research and Development Co. Ltd. at the Weizmann Institute of Science
    Inventors: David Milstein, Chidambaram Gunanathan
  • Publication number: 20090112005
    Abstract: The present invention provides a process for preparing amides, by reacting a primary amine and a primary alcohol in the presence of a Ruthenium catalyst, to generate the amide and molecular hydrogen. According to the process of the invention, primary amines are directly acylated by equimolar amounts of alcohols to produce amides and molecular hydrogen (the only byproduct) in high yields and high turnover numbers. This reaction is catalyzed by a Ruthenium complex, which is preferably based on a dearomatized PNN-type ligand of formula A1 or precursors thereof of formulae A2 or A3. Use of diamines in the reaction leads to bis-amides, whereas with a mixed primary/secondary amine substrate, chemoselective acylation of the primary amine group occurs.
    Type: Application
    Filed: October 29, 2008
    Publication date: April 30, 2009
    Inventors: David MILSTEIN, Chidambaram Gunanathan, Yehoshua Ben-David