Patents by Inventor Chieh-Hsiung Kuan

Chieh-Hsiung Kuan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10115563
    Abstract: An electron-beam lithography method includes, computing and outputting a development time of a positive-tone electron-sensitive layer and a parameter recipe of an electron-beam device by using a pattern dimension simulation system, performing a low-temperature treatment to chill a developer solution, utilizing an electron-beam to irradiate an exposure region of the positive-tone electron-sensitive layer based on the parameter recipe, and utilizing the chilled developer solution to develop a development region of the positive-tone electron-sensitive layer based on the development time. The development region is present within the exposure region, and an area of the exposure region is smaller than that of the first portion. As a result, the electron-beam lithography method may control a dimension of a development pattern of the positive-tone electron-sensitive layer more accurately, and may also shrink a minimum dimension of the development pattern of the positive-tone electron-sensitive layer.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: October 30, 2018
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Chieh-Hsiung Kuan, Chun Nien, Wen-Sheng Su, Li-Cheng Chang, Cheng-Huan Chung, Wei-Cheng Rao, Hsiu-Yun Yeh, Shao-Wen Chang, Kuan-Yuan Shen, Susumu Ono
  • Publication number: 20180149980
    Abstract: An electron-beam lithography method includes, computing and outputting a development time of a positive-tone electron-sensitive layer and a parameter recipe of an electron-beam device by using a pattern dimension simulation system, performing a low-temperature treatment to chill a developer solution, utilizing an electron-beam to irradiate an exposure region of the positive-tone electron-sensitive layer based on the parameter recipe, and utilizing the chilled developer solution to develop a development region of the positive-tone electron-sensitive layer based on the development time. The development region is present within the exposure region, and an area of the exposure region is smaller than that of the first portion. As a result, the electron-beam lithography method may control a dimension of a development pattern of the positive-tone electron-sensitive layer more accurately, and may also shrink a minimum dimension of the development pattern of the positive-tone electron-sensitive layer.
    Type: Application
    Filed: June 1, 2017
    Publication date: May 31, 2018
    Inventors: Chieh-Hsiung KUAN, Chun NIEN, Wen-Sheng SU, Li-Cheng CHANG, Cheng-Huan CHUNG, Wei-Cheng RAO, Hsiu-Yun YEH, Shao-Wen CHANG, Kuan-Yuan SHEN, Susumu ONO
  • Patent number: 9450117
    Abstract: The present invention provides a optoelectronic device having a surface periodic grating structure and a manufacturing method thereof, which includes: a substrate; a multi-layer semiconductor structure layer formed on the substrate; and a periodic grating structure layer embedded in the multi-layer semiconductor structure layer by etching based on optimized parameters. A direction of an incident light to the optoelectronic device is changed to be resonant to the multi-layer semiconductor structure layer to enhance optoelectricity of the optoelectronic device. The method includes: (1) providing a substrate; (2) forming a multi-layer semiconductor structure layer on the substrate; (3) selecting parameters to perform a design for a periodic grating structure layer on a surface of the multi-layer semiconductor structure layer; and (4) forming the periodic grating structure layer embedded in the multi-layer semiconductor structure layer by etching.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: September 20, 2016
    Assignee: Kingwave Corporation
    Inventors: Chieh-Hsiung Kuan, Ming-Lun Lee
  • Publication number: 20160225924
    Abstract: The present invention provides a solar cell with a surface staged type antireflective layer, comprising a photoelectric conversion layer having a first surface and a second surface opposite from each other and used for receiving incident photons in order to generate charged carriers; a staged type antireflective layer formed on the first surface; the staged type antireflective layer comprising a textured surface structure formed on the first surface via a coarsening method and a plurality of nanostructures formed to protrude from or indent into the textured surface structure; a front-side conductive layer disposed on top the staged type antireflective layer; and a back-side conductive layer disposed underneath the second surface; wherein the s staged type antireflective layer is used for allowing the solar cell to generate an antireflection effect subject to light in a full spectrum range; wherein the full spectrum range is between 300 nm to 1100 nm.
    Type: Application
    Filed: July 24, 2015
    Publication date: August 4, 2016
    Inventors: Chieh-Hsiung Kuan, Ming-Lun Lee, Wen-Sheng Su
  • Patent number: 9164316
    Abstract: There is provided a color regulating device for illumination. The color regulating device includes a light-valving structure for adjusting a flux ratio of outgoing light through the light-valving structure to incident light entering the light-valving structure, and a color-adjusting structure having a wavelength-band converting element for changing incident light with a wavelength band into outgoing light with a different wavelength band through the element. Wherein, the light-valving structure and the color-adjusting structure at least partially overlap on the traveling path of light, forming at least one overlapping structure. Mixing the outgoing lights of the light source passing through light-valving structure, the color-adjusting structure, and the overlapping structure to obtain a different wavelength band (or color temperature) from that of the light source. There are also provided a color adjusting apparatus for illumination including the color adjusting device and a color adjusting method.
    Type: Grant
    Filed: January 12, 2014
    Date of Patent: October 20, 2015
    Assignee: PLANCK CO., LTD.
    Inventors: Chih-Yu Chao, Chiu-Chang Huang, Chieh-Hsiung Kuan, Vin-Cent Su
  • Patent number: 9134570
    Abstract: There is provided a color-regulating device for illumination. The color-regulating device includes a light-valving structure for adjusting a flux ratio of outgoing light through the light-valving structure to incident light entering the light-valving structure, and a color-adjusting structure having a wavelength-band converting element for changing incident light with a wavelength band into outgoing light with a different wavelength band through the element. Wherein, the light-valving structure and the color-adjusting structure do not overlap on the traveling path of the light emitted from the light source. Mixing the outgoing light of the light source passing through the light-valving structure with the outgoing light of the light source passing through and at least a portion thereof converted by the color-adjusting structure with a different wavelength band yields a color-adjusted light of different color temperature from that of the light source.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: September 15, 2015
    Assignee: PLANCK CO., LTD.
    Inventors: Chin-Yu Chao, Chiu-Chang Huang, Chieh-Hsiung Kuan, Vin-Cent Su
  • Publication number: 20150129023
    Abstract: The present invention provides a optoelectronic device having a surface periodic grating structure and a manufacturing method thereof, which includes: a substrate; a multi-layer semiconductor structure layer formed on the substrate; and a periodic grating structure layer embedded in the multi-layer semiconductor structure layer by etching based on optimized parameters. A direction of an incident light to the optoelectronic device is changed to be resonant to the multi-layer semiconductor structure layer to enhance optoelectricity of the optoelectronic device. The method includes: (1) providing a substrate; (2) forming a multi-layer semiconductor structure layer on the substrate; (3) selecting parameters to perform a design for a periodic grating structure layer on a surface of the multi-layer semiconductor structure layer; and (4) forming the periodic grating structure layer embedded in the multi-layer semiconductor structure layer by etching.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 14, 2015
    Inventors: Chieh-Hsiung Kuan, Ming-Lun Lee
  • Publication number: 20150130067
    Abstract: This invention provides an ohmic contact structure including: a semiconductor substrate having a top surface which includes a plurality of micro-structures; and a conductive layer, which is formed on the micro-structures. An ohmic contact is formed by the conductive layer and the semiconductor substrate. The present invention also provides a semiconductor device having the ohmic contact structure.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chien-Wei Chiu, Ting-Wei Liao, Chieh-Hsiung Kuan, Tsung-Yi Huang, Tsung-Yu Yang
  • Patent number: 8871652
    Abstract: A method for manufacturing a semiconductor template balanced between strains and defects is provided, the method including steps of: preparing a substrate, dividing the substrate into a plurality of first patterned zones and a plurality of second patterned zones, the second patterned zones applied to separate the first patterned zones; selecting a semiconductor with an ideal lattice of a semiconductor buffer layer to be deposited on the substrate; etching a plurality of first microstructures in the first patterned zones according to the semiconductor with the ideal lattice, the first microstructures and the semiconductor with the ideal lattice following a lattice-structure matching relationship, discovered by strain-traction experiments, making the substrate a multi-patterned substrate; and depositing the semiconductor buffer layer having the semiconductor with the ideal lattice on the multi-patterned substrate to manufacture a semiconductor template which is balanced between strains and defects.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 28, 2014
    Assignee: Kingwave Corporation
    Inventors: Chieh-Hsiung Kuan, Wen-Sheng Su
  • Publication number: 20140147991
    Abstract: A method for manufacturing a semiconductor template balanced between strains and defects is provided, the method including steps of: preparing a substrate, dividing the substrate into a plurality of first patterned zones and a plurality of second patterned zones, the second patterned zones applied to separate the first patterned zones; selecting a semiconductor with an ideal lattice of a semiconductor buffer layer to be deposited on the substrate; etching a plurality of first microstructures in the first patterned zones according to the semiconductor with the ideal lattice, the first microstructures and the semiconductor with the ideal lattice following a lattice-structure matching relationship, discovered by strain-traction experiments, making the substrate a multi-patterned substrate; and depositing the semiconductor buffer layer having the semiconductor with the ideal lattice on the multi-patterned substrate to manufacture a semiconductor template which is balanced between strains and defects.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 29, 2014
    Applicant: KINGWAVE CORPORATION
    Inventors: CHIEH-HSIUNG KUAN, WEN-SHENG SU
  • Publication number: 20140125898
    Abstract: There is provided a color regulating device for illumination. The color regulating device includes a light-valving structure for adjusting a flux ratio of outgoing light through the light-valving structure to incident light entering the light-valving structure, and a color-adjusting structure having a wavelength-band converting element for changing incident light with a wavelength band into outgoing light with a different wavelength band through the element. Wherein, the light-valving structure and the color-adjusting structure at least partially overlap on the traveling path of light, forming at least one overlapping structure. Mixing the outgoing lights of the light source passing through light-valving structure, the color-adjusting structure, and the overlapping structure to obtain a different wavelength band (or color temperature) from that of the light source. There are also provided a color adjusting apparatus for illumination including the color adjusting device and a color adjusting method.
    Type: Application
    Filed: January 12, 2014
    Publication date: May 8, 2014
    Applicant: Planck Co., Ltd.
    Inventors: Chih-Yu CHAO, Chiu-Chang HUANG, Chieh-Hsiung KUAN, Vin-Cent SU
  • Patent number: 8698980
    Abstract: A color regulating device for illumination. includes a light-valving structure for adjusting a flux ratio of outgoing light through the light-valving structure to incident light entering the light-valving structure, and a color-adjusting structure having a wavelength-band converting element for changing incident light with a wavelength band into outgoing light with a different wavelength band through the element. The light-valving structure and the color-adjusting structure at least partially overlap on the traveling path of light, forming at least one overlapping structure. Mixing the outgoing lights of the light source passing through light-valving structure, the color-adjusting structure, and the overlapping structure to obtain a different wavelength band (or color temperature) from that of the light source. A color adjusting apparatus for illumination includes the color adjusting device and a color adjusting method.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: April 15, 2014
    Assignee: Planck Co., Ltd.
    Inventors: Chih-Yu Chao, Chiu-Chang Huang, Chieh-Hsiung Kuan, Vin-Cent Su
  • Patent number: 8687147
    Abstract: There is provided a color-regulating device for illumination. The color-regulating device includes a light-valving structure for adjusting a flux ratio of outgoing light through the light-valving structure to incident light entering the light-valving structure, and a color-adjusting structure having a wavelength-band converting element for changing incident light with a wavelength band into outgoing light with a different wavelength band through the element. Wherein, the light-valving structure and the color-adjusting structure do not overlap on the traveling path of the light emitted from the light source. Mixing the outgoing light of the light source passing through the light-valving structure with the outgoing light of the light source passing through and at least a portion thereof converted by the color-adjusting structure with a different wavelength band yields a color-adjusted light of different color temperature from that of the light source.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: April 1, 2014
    Assignee: Planck Co., Ltd.
    Inventors: Chih-Yu Chao, Chiu-Chang Huang, Chieh-Hsiung Kuan, Vin-Cent Su
  • Publication number: 20130299840
    Abstract: The present invention discloses a Schottky barrier diode (SBD) and a manufacturing method thereof. The SBD includes: a semiconductor layer, which has multiple openings forming an opening array; and an anode, which has multiple conductive protrusions protruding into the multiple openings and forming a conductive array; wherein a Schottky contact is formed between the semiconductor layer and the anode.
    Type: Application
    Filed: May 8, 2012
    Publication date: November 14, 2013
    Inventors: Chieh-Hsiung Kuan, Ting-Wei Liao, Chien-Wei Chiu, Tsung-Yi Huang
  • Publication number: 20130250211
    Abstract: There is provided a color-regulating device for illumination. The color-regulating device includes a light-valving structure for adjusting a flux ratio of outgoing light through the light-valving structure to incident light entering the light-valving structure, and a color-adjusting structure having a wavelength-band converting element for changing incident light with a wavelength band into outgoing light with a different wavelength band through the element. Wherein, the light-valving structure and the color-adjusting structure do not overlap on the traveling path of the light emitted from the light source. Mixing the outgoing light of the light source passing through the light-valving structure with the outgoing light of the light source passing through and at least a portion thereof converted by the color-adjusting structure with a different wavelength band yields a color-adjusted light of different color temperature from that of the light source.
    Type: Application
    Filed: May 24, 2013
    Publication date: September 26, 2013
    Applicant: Planck Co., Ltd.
    Inventors: Chin-Yu CHAO, Chiu-Chang HUANG, Chieh-Hsiung KUAN, Vin-Cent SU
  • Patent number: 8232475
    Abstract: A nano-hole array for improving contact conductance of a conductor element that consists of a first layer and a second layer is provided. The nano-hole array formed between the first and second layers comprises a plurality of holes. The contact conductance of the conductor element is enhanced by reducing the hole size of the hole array, increasing the occupation rate of the hole array, and performing thermal annealing.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: July 31, 2012
    Assignee: National Taiwan University
    Inventors: Jong-Lih Li, Chieh-Hsiung Kuan
  • Publication number: 20100071932
    Abstract: A nano-hole array for improving contact conductance of a conductor element that consists of a first layer and a second layer is provided. The nano-hole array formed between the first and second layers comprises a plurality of holes. The contact conductance of the conductor element is enhanced by reducing the hole size of the hole array, increasing the occupation rate of the hole array, and performing thermal annealing.
    Type: Application
    Filed: February 10, 2009
    Publication date: March 25, 2010
    Inventors: Jong-Lih LI, Chieh-Hsiung KUAN
  • Patent number: 6818917
    Abstract: An infrared photodetector structure with voltage-tunable and -switchable photoresponses constructed of superlattices and blocking barriers. The photoresponses of the double-superlattice structure are also insensitive to the operating temperature changes. By using GaAs/AlxGa1-xAs system, the feasibility of this idea is verified. In the embodiment, the photoresponses can be switched between 6˜8.5 and 7.5˜12 m by the bias polarity and are also tunable by the bias magnitude in each detection wavelength range. In addition, the photoresponses are insensitive to operating temperatures ranging from 20 to 80 K. For the SLIP with few periods, the responsivity may be higher than the one with many periods and the operational temperature is higher. These results show the invention can be useful in the design of multicolor imaging systems.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: November 16, 2004
    Assignees: National Taiwan University, Integrated Crystal Technology Inc.
    Inventors: Chieh-Hsiung Kuan, Hsin-Cheng Chen, Chun-Chi Chen, Sheng-Di Lin, Jen-Hsiang Lu
  • Publication number: 20040178421
    Abstract: An infrared photodetector structure with voltage-tunable and -switchable photoresponses constructed of superlattices and blocking barriers. The photoresponses of the double-superlattice structure are also insensitive to the operating temperature changes. By using GaAs/AlxGa1-xAs system, the feasibility of this idea is verified. In the embodiment, the photoresponses can be switched between 6˜8.5 and 7.5˜12 m by the bias polarity and are also tunable by the bias magnitude in each detection wavelength range. In addition, the photoresponses are insensitive to operating temperatures ranging from 20 to 80 K. For the SLIP with few periods, the responsivity may be higher than the one with many periods and the operational temperature is higher. These results show the invention can be useful in the design of multicolor imaging systems.
    Type: Application
    Filed: March 12, 2003
    Publication date: September 16, 2004
    Applicant: National Taiwan University and Integrated Crystal Technology Incorporation
    Inventors: Chieh-Hsiung Kuan, Hsin-Cheng Chen, Chun-Chi Chen, Sheng-Di Lin, Jen-Hsiang Lu
  • Patent number: 6433354
    Abstract: A superlattice infrared photodetector is disclosed, which can be fabricated easily by molecular beam epitaxy, has low power consumption and small dark current. Furthermore, the working temperature to operate the detector under background limited performance can be achieved by cooling down to the liquid nitrogen temperature. That is, the front and rear sides of the superlattice structure are added with blocking layers with sufficient height and width. The thickness is about 50 nm and the height of the energy barrier must be higher than the bottom of the second miniband of the superlattice structure by a value of more than 10 meV. Thereby, with the generation of photocurrent, the dark current is reduced at the same time. Therefore, the ratio of the photocurrent to the dark current can be improved effectively so that the working temperature for the background limited performance is increased vastly to even higher than 77 K.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: August 13, 2002
    Assignees: National Taiwan University, Integrated Crystal Technology Incorporation
    Inventors: Chieh-Hsiung Kuan, Jen-Ming Chen, Chun-Chi Chen, Mao-Chieh Hsu