Patents by Inventor Chieh-Yao Chuang

Chieh-Yao Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230387103
    Abstract: A semiconductor structure is provided. At least one first well region is disposed in a semiconductor substrate and has a first conductivity type. At least one gate of a transistor is disposed over the first well region and extends in a first direction. At least one second well region and at least one third well region are disposed on opposite sides of the first well region and extend in the first direction. The second and third well regions have a second conductivity type. A first shielding structure is disposed on at least one end of the gate and partially overlaps the first well region in a vertical projection direction. The first shielding structure is separated from the end of the gate. A bulk ring is disposed in the semiconductor substrate and surrounds the gate, the second well region, the third well region, and the first shielding structure.
    Type: Application
    Filed: May 27, 2022
    Publication date: November 30, 2023
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Hsien-Feng LIAO, Jian-Hsing LEE, Chieh-Yao CHUANG, Ting-Yu CHANG, Yeh-Ning JOU, Shao-Chang HUANG, Kan-Sen CHEN, Nai-Lun CHENG, Ching-Yi HSU, Yu-Chen WU
  • Patent number: 11811222
    Abstract: An electrostatic discharge (ESD) protection circuit including a detection circuit, a voltage-divider element, and a discharge element is provided. The detection circuit is coupled between a first power line and a second power line. In response to an ESD event, the detection circuit enables a turn-on signal. The voltage-divider element is coupled between the first power line and a third power line and receives the turn-on signal. The discharge element is coupled between the second and third power lines. In response to the turn-on signal being enabled, the first discharge element discharges an ESD current.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: November 7, 2023
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Yeh-Ning Jou, Chieh-Yao Chuang, Hsien-Feng Liao, Ting-Yu Chang, Chih-Hsuan Lin, Chang-Min Lin, Shao-Chang Huang, Ching-Ho Li
  • Publication number: 20230335546
    Abstract: An ESD protection circuit includes a buffer circuit, a driving circuit, and a power-clamping circuit. The buffer circuit includes first and second transistors having a first conductivity type coupled in a cascade configuration between a first node and a first power supply node. A bonding pad is coupled to the first node. The drive circuit determines a state of at least one of the first and second transistors according to a control voltage. The drive circuit includes a third transistor having a second conductivity type, which is coupled between a second power supply node and a gate of the first transistor and is controlled by the control signal. The power-clamping circuit is coupled to the bonding pad and a gate of the third transistor at a second node. The control voltage is generated at the second node and determined by a voltage at the bonding pad.
    Type: Application
    Filed: April 14, 2022
    Publication date: October 19, 2023
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Shao-Chang HUANG, Kai-Chieh HSU, Chi-Hung LO, Wei-Sung CHEN, Chieh-Yao CHUANG, Hsien-Feng LIAO, Yeh-Ning JOU
  • Publication number: 20230198250
    Abstract: An electrostatic discharge (ESD) protection circuit including a detection circuit, a voltage-divider element, and a discharge element is provided. The detection circuit is coupled between a first power line and a second power line. In response to an ESD event, the detection circuit enables a turn-on signal. The voltage-divider element is coupled between the first power line and a third power line and receives the turn-on signal. The discharge element is coupled between the second and third power lines. In response to the turn-on signal being enabled, the first discharge element discharges an ESD current.
    Type: Application
    Filed: December 16, 2021
    Publication date: June 22, 2023
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Yeh-Ning JOU, Chieh-Yao CHUANG, Hsien-Feng LIAO, Ting-Yu CHANG, Chih-Hsuan LIN, Chang-Min LIN, Shao-Chang HUANG, Ching-Ho LI
  • Patent number: 11574997
    Abstract: A semiconductor structure including a substrate, a first well, a second well, a first doped region, a second doped region, a gate electrode, an insulating layer, a field plate, and a tunable circuit is provided. The first and second wells are formed on the substrate. The first doped region is formed in the first well. The second doped region is formed in the second well. The gate electrode is disposed over the substrate. The gate electrode, the first doped region, and the second doped region constitute a transistor. The insulating layer is disposed on the substrate and overlaps the gate electrode. The field plate overlaps the insulating layer and the gate electrode. The tunable circuit provides either a first short-circuit path between the field plate and the gate electrode, or a second short-circuit path between the field plate and the first doped region.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: February 7, 2023
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Shao-Chang Huang, Li-Fan Chen, Ching-Ho Li, Gong-Kai Lin, Chieh-Yao Chuang
  • Publication number: 20230034420
    Abstract: A semiconductor structure including a substrate, a first well, a second well, a first doped region, a second doped region, a gate electrode, an insulating layer, a field plate, and a tunable circuit is provided. The first and second wells are formed on the substrate. The first doped region is formed in the first well. The second doped region is formed in the second well. The gate electrode is disposed over the substrate. The gate electrode, the first doped region, and the second doped region constitute a transistor. The insulating layer is disposed on the substrate and overlaps the gate electrode. The field plate overlaps the insulating layer and the gate electrode. The tunable circuit provides either a first short-circuit path between the field plate and the gate electrode, or a second short-circuit path between the field plate and the first doped region.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 2, 2023
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Shao-Chang HUANG, Li-Fan CHEN, Ching-Ho LI, Gong-Kai LIN, Chieh-Yao CHUANG
  • Patent number: 11569657
    Abstract: The protection circuit includes a detection circuit and a discharge circuit. The detection circuit is coupled to first and second power bonding pads and detects whether an ESD event or an EOS event occurs at the first power bonding pad. The detection circuit controls a detection voltage on a detection node according to a detection result. The first and second power bonding pads belong to different power domains. The discharge circuit is coupled to the detection node and the first power pad. In response to the ESD event occurring at the first power bonding pad, the discharge circuit provides a discharge path between the first power bonding pad and a ground terminal according to the detection voltage. In response to the EOS event occurring at the first power bonding pad, the detection circuit activates a second discharge path between the first power bonding pad and the ground terminal.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: January 31, 2023
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shao-Chang Huang, Ching-Ho Li, Hsien-Feng Liao, Chieh-Yao Chuang, Yeh-Ning Jou
  • Patent number: 11088541
    Abstract: An electrostatic discharge protection circuit is provided. The electrostatic discharge protection circuit includes an electrostatic discharge detection circuit, a discharge circuit, and a switch. The electrostatic discharge detection circuit detects whether an electrostatic discharge event occurs at the bounding pad to generate a first detection circuit. The discharge circuit receives the first detection signal. When the electrostatic discharge event occurs at the bounding pad, the discharge circuit provides a discharge path between the bounding pad and a ground terminal according to the first detection signal. The switch is coupled between the core circuit and the ground terminal and controlled by the first detection signal. When the electrostatic discharge event occurs at the bounding pad, the switch is turned off according to the first detection signal.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: August 10, 2021
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shao-Chang Huang, Jia-Rong Yeh, Yeh-Ning Jou, Hsien-Feng Liao, Yi-Han Wu, Chih-Cherng Liao, Chieh-Yao Chuang, Wei-Shung Chen, Ching-Wen Chen, Pang-Chuan Chen
  • Patent number: 10818653
    Abstract: A control circuit providing an output voltage and including an N-type transistor, a first P-type transistor and a second P-type transistor is provided. The N-type transistor is coupled to a first power terminal. The first P-type transistor includes a first source, a first drain, a first gate and a first bulk. The first gate is coupled to a gate of the N-type transistor. The first bulk is coupled to the first source. The second P-type transistor includes a second source, a second drain, a second gate and a second bulk. The second source is coupled to a second power terminal. The second drain and the second bulk are coupled to the first bulk.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: October 27, 2020
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Shao-Chang Huang, Shang-Chuan Pai, Wei-Chung Wu, Szu-Chi Chen, Sheng-Chih Chuang, Yin-Ting Lin, Pei-Chun Yu, Han-Pei Liu, Jung-Tsun Chuang, Chieh-Yao Chuang, Hung-Wei Chen
  • Patent number: 10719097
    Abstract: A voltage regulation circuit is suitable to provide an output voltage to a core circuit. The voltage regulation circuit includes a pad, a pull-low unit, a first controlling unit, a second controlling unit and a voltage regulation circuit. The pad receives and provides an input voltage. The pull-low unit generates a pull-low voltage according to the input voltage. The first controlling unit generates a first controlling signal according to the input voltage and the pull-low voltage. The second controlling unit generates a second controlling signal according to the input voltage and the first controlling signal. The voltage regulation unit regulates the input voltage according to the first controlling signal and the second controlling signal, so as to generate the output voltage.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: July 21, 2020
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Jung-Tsun Chuang, Shao-Chang Huang, Wen-Tsung Wang, Chieh-Yao Chuang, Chi-Hung Lo
  • Publication number: 20200083704
    Abstract: An electrostatic discharge protection circuit is provided. The electrostatic discharge protection circuit includes an electrostatic discharge detection circuit, a discharge circuit, and a switch. The electrostatic discharge detection circuit detects whether an electrostatic discharge event occurs at the bounding pad to generate a first detection circuit. The discharge circuit receives the first detection signal. When the electrostatic discharge event occurs at the bounding pad, the discharge circuit provides a discharge path between the bounding pad and a ground terminal according to the first detection signal. The switch is coupled between the core circuit and the ground terminal and controlled by the first detection signal. When the electrostatic discharge event occurs at the bounding pad, the switch is turned off according to the first detection signal.
    Type: Application
    Filed: September 7, 2018
    Publication date: March 12, 2020
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Shao-Chang HUANG, Jia-Rong YEH, Yeh-Ning JOU, Hsien-Feng LIAO, Yi-Han WU, Chih-Cherng LIAO, Chieh-Yao CHUANG, Wei-Shung CHEN, Ching-Wen CHEN, Pang-Chuan CHEN
  • Patent number: 10523002
    Abstract: An electrostatic discharge (ESD) protection circuit is provided. A detector is coupled between a first input-output pad and a second input-output pad and detects the voltage levels of the first and second input-output pads to generate a detection signal. A inverter generates a control signal according to the detection signal. A control element is coupled between the first input-output pad and a first node. A current release element is coupled between the first node and the second input-output pad. When the detection signal is at a specific level, the control element and the current release element provide a discharge path to release an ESD current from the first input-output pad to the second input-output pad. When the detection signal is not at the specific level, the control element and the current release element do not provide a discharge path.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: December 31, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Shao-Chang Huang, Jung-Tsun Chuang, Chieh-Yao Chuang, Hung-Wei Chen
  • Publication number: 20190181135
    Abstract: A control circuit providing an output voltage and including an N-type transistor, a first P-type transistor and a second P-type transistor is provided. The N-type transistor is coupled to a first power terminal. The first P-type transistor includes a first source, a first drain, a first gate and a first bulk. The first gate is coupled to a gate of the N-type transistor. The first bulk is coupled to the first source. The second P-type transistor includes a second source, a second drain, a second gate and a second bulk. The second source is coupled to a second power terminal. The second drain and the second bulk are coupled to the first bulk.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Shao-Chang HUANG, Shang-Chuan PAI, Wei-Chung WU, Szu-Chi CHEN, Sheng-Chih CHUANG, Yin-Ting LIN, Pei-Chun YU, Han-Pei LIU, Jung-Tsun CHUANG, Chieh-Yao CHUANG, Hung-Wei CHEN
  • Patent number: 10262706
    Abstract: An anti-floating circuit including a first pull-high circuit, a first pull-low circuit and a first control circuit is provided. The first pull-high circuit includes a first P-type transistor and a second P-type transistor and is coupled to a first power terminal. The first pull-low circuit includes a first N-type transistor and a second N-type transistor and is coupled to a second power terminal. A first path is between the first P-type transistor and the first N-type transistor. A second path is between the second P-type transistor and the second N-type transistor. A third path is between the first P-type transistor and the second power terminal. In the first mode, the control circuit turns on the first and second paths and turns off the third path. In the second mode, the control circuit turns off the first and second paths and turns on the third path.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: April 16, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Jung-Tsun Chuang, Shao-Chang Huang, Ching-Wen Chen, Chieh-Yao Chuang, Yu-Yen Lin
  • Patent number: 10164627
    Abstract: A power-on control circuit controlling a first output switch and a second output switch is provided. A detecting circuit detects a first voltage to generate a detection signal to a first node. A switching circuit receives the first voltage and a second voltage and transmits the first or second voltage to a second node according to the voltage level of the first node. A setting circuit generates a feedback signal to the first node according to a voltage level of the second node. When the first voltage reaches a first pre-determined value and the second voltage has not reached a second pre-determined value, the switching circuit transmits the second voltage to the second node. When the second voltage reaches the second pre-determined value, the switching circuit transmits the first voltage to the second node.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: December 25, 2018
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Jung-Tsun Chuang, Shao-Chang Huang, Chieh-Yao Chuang, Hung-Wei Chen
  • Patent number: 10101760
    Abstract: A power-on control circuit is provided. The power-on control circuit includes first and second power terminals, a switch circuit, an inverter chain circuit, and a capacitor. The switch circuit has a control terminal receiving a first control signal, an input terminal coupled to the second power terminal, and an output terminal coupled to a first node. The inverter chain circuit has an input terminal coupled to the first node and generates the first control signal. The capacitor is coupled between the first node and a ground. When the first power terminal receives a first voltage and the second power terminal does not receive a second voltage, the switch circuit is turned on according to the first control signal. When the first power terminal receives the first voltage and the second power terminal receives the second voltage, the switch circuit is turned off according to the first control signal.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: October 16, 2018
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shao-Chang Huang, Jung-Tsun Chuang, Chieh-Yao Chuang, Hung-Wei Chen
  • Publication number: 20180284825
    Abstract: A power-on control circuit is provided. The power-on control circuit includes first and second power terminals, a switch circuit, an inverter chain circuit, and a capacitor. The switch circuit has a control terminal receiving a first control signal, an input terminal coupled to the second power terminal, and an output terminal coupled to a first node. The inverter chain circuit has an input terminal coupled to the first node and generates the first control signal. The capacitor is coupled between the first node and a ground. When the first power terminal receives a first voltage and the second power terminal does not receive a second voltage, the switch circuit is turned on according to the first control signal. When the first power terminal receives the first voltage and the second power terminal receives the second voltage, the switch circuit is turned off according to the first control signal.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 4, 2018
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Shao-Chang HUANG, Jung-Tsun CHUANG, Chieh-Yao CHUANG, Hung-Wei CHEN
  • Patent number: 10056897
    Abstract: A power-on control circuit is provided. A first detection circuit detects the voltage of a first voltage source to generate a first detection signal to a first node. A switching circuit is coupled to the first voltage source and a second voltage source and outputs the voltage of the first voltage source or the voltage of the second voltage source to a second node according to the voltage level of the first node. A first buffer generates a feedback signal and a control signal according to the voltage level of the second node. A second detection circuit generates a second detection signal according to the feedback signal, the control signal, the voltage of the second voltage source and a recovery signal. A second buffer generates the recovery signal according to the second detection signal.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: August 21, 2018
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Jung-Tsun Chuang, Shao-Chang Huang, Chieh-Yao Chuang, Hung-Wei Chen
  • Publication number: 20180159323
    Abstract: An electrostatic discharge (ESD) protection circuit is provided. A detector is coupled between a first input-output pad and a second input-output pad and detects the voltage levels of the first and second input-output pads to generate a detection signal. A inverter generates a control signal according to the detection signal. A control element is coupled between the first input-output pad and a first node. A current release element is coupled between the first node and the second input-output pad. When the detection signal is at a specific level, the control element and the current release element provide a discharge path to release an ESD current from the first input-output pad to the second input-output pad. When the detection signal is not at the specific level, the control element and the current release element do not provide a discharge path.
    Type: Application
    Filed: December 5, 2016
    Publication date: June 7, 2018
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Shao-Chang HUANG, Jung-Tsun CHUANG, Chieh-Yao CHUANG, Hung-Wei CHEN
  • Patent number: 8441306
    Abstract: This invention provides a poly fuse burning system comprising a poly fuse, a controllable power source supplying power for burning the poly fuse, and a monitor circuit monitoring the burning state of the poly fuse, wherein when a targeted burning state is reached, a control signal is output to shut down the controllable power source to stop the burning.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: May 14, 2013
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Jui-Lung Chen, Tien-Hui Huang, Chieh-Yao Chuang