Patents by Inventor Chien-I Kuo

Chien-I Kuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10177143
    Abstract: A semiconductor device includes a semiconductor substrate, at least one first isolation structure, at least one second isolation structure, a source structure, a drain structure and a plurality of semiconductor fins. The first isolation structure and the second isolation structure are located on the semiconductor substrate. The source structure is located on the semiconductor substrate and the first isolation structure, in which at least one first gap is located between the source structure and the first isolation structure. The drain structure is located on the semiconductor substrate and the second isolation structure, in which at least one second gap is located between the drain structure and the second isolation structure. The semiconductor fins protrude from the semiconductor substrate, in which the semiconductor fins are spaced apart from each other, and connect the source structure and the drain structure.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: January 8, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chii-Horng Li, Chien-I Kuo, Lilly Su, Chien-Chang Su, Ying-Wei Li
  • Patent number: 10103249
    Abstract: A semiconductor device includes a semiconductor substrate, a plurality of semiconductor fins and a source/drain structure. The semiconductor fins and the source/drain structure are located on the semiconductor substrate, and the source/drain structure is connected to the semiconductor fins. The source/drain structure has a top portion with a W-shape cross section for forming a contact landing region. The semiconductor device may further include a plurality of capping layers located on a plurality of recessed portions of the top portion.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: October 16, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Ru Lee, Chii-Horng Li, Chien-I Kuo, Heng-Wen Ting, Jung-Chi Tai, Lilly Su, Yang-Tai Hsiao
  • Publication number: 20180175144
    Abstract: A method includes forming a crown structure over a substrate; forming fins in the crown structure; forming an intra-device isolation region between the fins and forming inter-device isolation regions on opposing sides of the crown structure; forming a gate structure over the fins; forming a dielectric layer that extends continuously over the inter-device isolation regions, the fins and the intra-device isolation region; performing an etching process to reduce a thickness of the dielectric layer, where after the etching process, upper surfaces of the inter-device isolation regions and upper surfaces of the fins are exposed while an upper surface of the intra-device isolation region is covered by a remaining portion of the dielectric layer; and forming an epitaxial structure over the exposed upper surfaces of the fins, where after the epitaxial structure is formed, there is a void between the epitaxial structure and the intra-device isolation region.
    Type: Application
    Filed: January 30, 2018
    Publication date: June 21, 2018
    Inventors: Yen-Ru Lee, Chii-Horng Li, Chien-I Kuo, Heng-Wen Ting, Jung-Chi Tai, Li-Li Su, Tzu-Ching Lin
  • Publication number: 20180175046
    Abstract: Source and drain formation techniques are disclosed herein for fin-like field effect transistors (FinFETs). An exemplary method for forming epitaxial source/drain features for a FinFET includes epitaxially growing a semiconductor material on a plurality of fins using a silicon-containing precursor and a chlorine-containing precursor. The semiconductor material merges to form an epitaxial feature spanning the plurality of fins, where the plurality of fins has a fin spacing that is less than about 25 nm. A ratio of a flow rate of the silicon-containing precursor to a flow rate of the chlorine-containing precursor is less than about 5. The method further includes etching back the semiconductor material using the chlorine-containing precursor, thereby modifying a profile of the epitaxial feature. The epitaxially growing and the etching back may be performed only once. In some implementations, where the FinFET is an n-type FinFET, the epitaxially growing also uses a phosphorous-containing precursor.
    Type: Application
    Filed: May 16, 2017
    Publication date: June 21, 2018
    Inventors: Yao-De Chiou, Wei-Yuan Lu, Chien-I Kuo, Sai-Hooi Yeong, Yen-Ming Chen
  • Publication number: 20180151703
    Abstract: An embodiment is a method including forming a raised portion of a substrate, forming fins on the raised portion of the substrate, forming an isolation region surrounding the fins, a first portion of the isolation region being on a top surface of the raised portion of the substrate between adjacent fins, forming a gate structure over the fins, and forming source/drain regions on opposing sides of the gate structure, wherein forming the source/drain regions includes epitaxially growing a first epitaxial layer on the fin adjacent the gate structure, etching back the first epitaxial layer, epitaxially growing a second epitaxial layer on the etched first epitaxial layer, and etching back the second epitaxial layer, the etched second epitaxial layer having a non-faceted top surface, the etched first epitaxial layer and the etched second epitaxial layer forming source/drain regions.
    Type: Application
    Filed: July 3, 2017
    Publication date: May 31, 2018
    Inventors: Tzu-Ching Lin, Chien-I Kuo, Wei Te Chiang, Wei Hao Lu, Li-Li Su, Chii-Horng Li
  • Publication number: 20180082883
    Abstract: An embodiment is a structure including a first fin over a substrate, a second fin over the substrate, the second fin being adjacent the first fin, an isolation region surrounding the first fin and the second fin, a gate structure along sidewalls and over upper surfaces of the first fin and the second fin, the gate structure defining channel regions in the first fin and the second fin, a source/drain region on the first fin and the second fin adjacent the gate structure, and an air gap separating the source/drain region from a top surface of the substrate.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 22, 2018
    Inventors: Yen-Ru Lee, Chii-Horng Li, Chien-I Kuo, Li-Li Su, Chien-Chang Su, Heng-Wen Ting, Jung-Chi Tai, Che-Hui Lee, Ying-Wei Li
  • Publication number: 20180083109
    Abstract: A semiconductor device and method of manufacturing the semiconductor device are provided. In some embodiments, the semiconductor device includes a fin extending from a substrate and a gate structure disposed over the fin. The gate structure includes a gate dielectric formed over the fin, a gate electrode formed over the gate dielectric, and a sidewall spacer formed along a sidewall of the gate electrode. In some cases, a U-shaped recess is within the fin and adjacent to the gate structure. A first source/drain layer is conformally formed on a surface of the U-shaped recess, where the first source/drain layer extends at least partially under the adjacent gate structure. A second source/drain layer is formed over the first source/drain layer. At least one of the first and second source/drain layers includes silicon arsenide (SiAs).
    Type: Application
    Filed: November 15, 2017
    Publication date: March 22, 2018
    Inventors: Chia-Ta YU, Sheng-Chen WANG, Wei-Yuan LU, Chien-I KUO, Li-Li SU, Feng-Cheng YANG, Yen-Ming CHEN, Sai-Hooi YEONG
  • Patent number: 9905641
    Abstract: A semiconductor device includes a substrate, at least one first isolation structure, at least two second isolation structure, and an epitaxy structure. The substrate has a plurality of semiconductor fins therein. The first isolation structure is disposed between the semiconductor fins. The semiconductor fins are disposed between the second isolation structures, and the second isolation structures extend into the substrate further than the first isolation structure. The epitaxy structure is disposed on the semiconductor fins. At least one void is present between the first isolation structure and the epitaxy structure.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: February 27, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Ru Lee, Chii-Horng Li, Chien-I Kuo, Heng-Wen Ting, Jung-Chi Tai, Lilly Su, Tzu-Ching Lin
  • Patent number: 9831116
    Abstract: An embodiment is a structure including a first fin over a substrate, a second fin over the substrate, the second fin being adjacent the first fin, an isolation region surrounding the first fin and the second fin, a gate structure along sidewalls and over upper surfaces of the first fin and the second fin, the gate structure defining channel regions in the first fin and the second fin, a source/drain region on the first fin and the second fin adjacent the gate structure, and an air gap separating the source/drain region from a top surface of the substrate.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: November 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Ru Lee, Chii-Horng Li, Chien-I Kuo, Li-Li Su, Chien-Chang Su, Heng-Wen Ting, Jung-Chi Tai, Che-Hui Lee, Ying-Wei Li
  • Patent number: 9831343
    Abstract: A semiconductor device having n-type field-effect-transistor (NFET) structure and a method of fabricating the same are provided. The NFET structure of the semiconductor device includes a silicon substrate, at least one source/drain portion and a cap layer. The source/drain portion can be disposed within the silicon substrate, and the source/drain portion comprises at least one n-type dopant-containing portion. The cap layer overlies and covers the source/drain portion, and the cap layer includes silicon carbide (SiC) or silicon germanium (SiGe) with relatively low germanium concentration, thereby preventing n-type dopants in the at least one n-type dopant-containing portion of the source/drain portion from being degraded after sequent thermal and cleaning processes.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: November 28, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chii-Horng Li, Chien-I Kuo, Lilly Su, Chien-Chang Su, Yi-Kai Tseng, Ying-Wei Li
  • Publication number: 20170125410
    Abstract: A semiconductor device includes a semiconductor substrate, at least one first isolation structure, at least one second isolation structure, a source structure, a drain structure and a plurality of semiconductor fins. The first isolation structure and the second isolation structure are located on the semiconductor substrate. The source structure is located on the semiconductor substrate and the first isolation structure, in which at least one first gap is located between the source structure and the first isolation structure. The drain structure is located on the semiconductor substrate and the second isolation structure, in which at least one second gap is located between the drain structure and the second isolation structure. The semiconductor fins protrude from the semiconductor substrate, in which the semiconductor fins are spaced apart from each other, and connect the source structure and the drain structure.
    Type: Application
    Filed: October 28, 2015
    Publication date: May 4, 2017
    Inventors: Chii-Horng LI, Chien-I KUO, Lilly SU, Chien-Chang SU, Ying-Wei LI
  • Publication number: 20170076973
    Abstract: An embodiment is a structure including a first fin over a substrate, a second fin over the substrate, the second fin being adjacent the first fin, an isolation region surrounding the first fin and the second fin, a gate structure along sidewalls and over upper surfaces of the first fin and the second fin, the gate structure defining channel regions in the first fin and the second fin, a source/drain region on the first fin and the second fin adjacent the gate structure, and an air gap separating the source/drain region from a top surface of the substrate.
    Type: Application
    Filed: January 20, 2016
    Publication date: March 16, 2017
    Inventors: Yen-Ru Lee, Chii-Horng Li, Chien-I Kuo, Lilly Su, Chien-Chang Su, Heng-Wen Ting, Jung-Chi Tai, Che-Hui Lee, Ying-Wei Li
  • Publication number: 20170077222
    Abstract: A semiconductor device includes a substrate, at least one first isolation structure, at least two second isolation structure, and an epitaxy structure. The substrate has a plurality of semiconductor fins therein. The first isolation structure is disposed between the semiconductor fins. The semiconductor fins are disposed between the second isolation structures, and the second isolation structures extend into the substrate further than the first isolation structure. The epitaxy structure is disposed on the semiconductor fins. At least one void is present between the first isolation structure and the epitaxy structure.
    Type: Application
    Filed: September 15, 2015
    Publication date: March 16, 2017
    Inventors: Yen-Ru LEE, Chii-Horng LI, Chien-I KUO, Heng-Wen TING, Jung-Chi TAI, Lilly SU, Tzu-Ching LIN
  • Publication number: 20170077228
    Abstract: A semiconductor device includes a semiconductor substrate, a plurality of semiconductor fins and a source/drain structure. The semiconductor fins and the source/drain structure are located on the semiconductor substrate, and the source/drain structure is connected to the semiconductor fins. The source/drain structure has a top portion with a W-shape cross section for forming a contact landing region. The semiconductor device may further include a plurality of capping layers located on a plurality of recessed portions of the top portion.
    Type: Application
    Filed: September 10, 2015
    Publication date: March 16, 2017
    Inventors: Yen-Ru LEE, Chii-Horng LI, Chien-I KUO, Heng-Wen TING, Jung-Chi TAI, Lilly SU, Yang-Tai HSIAO
  • Patent number: 9171920
    Abstract: The present invention discloses a gate structure, which is applied for an electronic component comprising a substrate and an active region defined thereon, and such the gate structure is disposed in the active region and is a T-shaped gate having a stem with a height of 250 nm. Preferably, the gate structure has a gate length of 60 nm.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: October 27, 2015
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Yi Chang, Chien-I Kuo, Heng-Tung Hsu
  • Publication number: 20150236109
    Abstract: The present invention discloses a gate structure, which is applied for an electronic component comprising a substrate and an active region defined thereon, and such the gate structure is disposed in the active region and is a T-shaped gate having a stem with a height of 250 nm. Preferably, the gate structure has a gate length of 60 nm.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 20, 2015
    Applicant: National Chiao Tung University
    Inventors: Yi CHANG, Chien-I KUO, Heng-Tung HSU
  • Patent number: 8169002
    Abstract: A high electron mobility transistor includes a substrate, a buffer layer, a channel layer, a spacer layer, a schottky layer and a cap layer. The buffer layer is formed on the substrate. The channel layer is formed on the buffer layer, in which the channel layer comprises a superlattice structure formed with a plurality of indium gallium arsenide thin films alternately stacked with a plurality of indium arsenide thin films. The spacer layer is formed on the channel layer. The schottky layer is formed on the spacer layer. The cap layer is formed on the schottky layer.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: May 1, 2012
    Assignee: National Chiao Tung University
    Inventors: Edward Yi Chang, Chien-I Kuo, Heng-Tung Hsu
  • Publication number: 20110156100
    Abstract: A high electron mobility transistor includes a substrate, a buffer layer, a channel layer, a spacer layer, a schottky layer and a cap layer. The buffer layer is formed on the substrate. The channel layer is formed on the buffer layer, in which the channel layer comprises a superlattice structure formed with a plurality of indium gallium arsenide thin films alternately stacked with a plurality of indium arsenide thin films. The spacer layer is formed on the channel layer. The schottky layer is formed on the spacer layer. The cap layer is formed on the schottky layer.
    Type: Application
    Filed: April 13, 2010
    Publication date: June 30, 2011
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Edward Yi Chang, Chien-I Kuo, Heng-Tung Hsu
  • Publication number: 20110089467
    Abstract: Heavily doped epitaxial SiGe material or epitaxial InxGa1-xAs are used to form the source and drain of III-V semiconductor device to apply stress to the channel of III-V semiconductor device. Therefore, the electron mobility can be increased.
    Type: Application
    Filed: January 26, 2010
    Publication date: April 21, 2011
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Edward Yi CHANG, Chien-I KUO, Chun-Yen CHANG
  • Publication number: 20070066051
    Abstract: A method for forming a gate pattern for an electronic device, comprising steps of: providing a substrate, whereon a first photo-resist layer is formed; performing a first photo-lithography process so as to form a first pattern with a first width on the substrate; forming a second photo-resist layer, covering the first pattern and the first photo-resist layer on the substrate; and performing a second photo-lithography process, which is shifted from the first photo-lithography process, so as to form a second pattern with a second width on the substrate; wherein the second width is smaller than the first width.
    Type: Application
    Filed: December 2, 2005
    Publication date: March 22, 2007
    Inventors: Szu-Hung Chen, Chien-I Kuo, Edward Chang