Patents by Inventor Chien-Ju Chao

Chien-Ju Chao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11455454
    Abstract: According to one implementation of the present disclosure, a method includes: generating a three-dimensional (3D) circuit design of an integrated circuit; and providing respective inter-tier connections coupling for first and second networks concurrently on the generated 3D circuit design. The first networks may include power or ground networks, while the second networks may include signal networks. In another implementation, a method includes: generating a three-dimensional (3D) circuit design of an integrated circuit; and providing inter-tier connections on the generated 3D circuit design during one of a placement stage, a partitioning stage, a clock tree synthesis (CTS) stage, or a routing stage of a physical circuit design procedure.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: September 27, 2022
    Assignee: Arm Limited
    Inventors: Chien-Ju Chao, Pranavi Chandupatla, Saurabh Pijuskumar Sinha, Sheng-En Hung, Xiaoqing Xu
  • Publication number: 20220164513
    Abstract: According to one implementation of the present disclosure, a method includes: generating a three-dimensional (3D) circuit design of an integrated circuit; and providing respective inter-tier connections coupling for first and second networks concurrently on the generated 3D circuit design. The first networks may include power or ground networks, while the second networks may include signal networks. In another implementation, a method includes: generating a three-dimensional (3D) circuit design of an integrated circuit; and providing inter-tier connections on the generated 3D circuit design during one of a placement stage, a partitioning stage, a clock tree synthesis (CTS) stage, or a routing stage of a physical circuit design procedure.
    Type: Application
    Filed: November 24, 2020
    Publication date: May 26, 2022
    Inventors: Chien-Ju Chao, Pranavi Chandupatla, Saurabh Pijuskumar Sinha, Sheng-En Hung, Xiaoqing Xu
  • Publication number: 20220139826
    Abstract: A method of generating a power network layout is provided. A first conductive line, generated by a processor, is in a first conductive layer along a first direction. A plurality of second conductive lines, generated by a processor, is in a second conductive layer along a second direction, substantially vertical to the first direction. The second conductive lines overlap with the first conductive line. A first plurality of interlayer vias, generated by a processor, is interposed between the first conductive layer and the second conductive layer at where the second conductive lines overlapping the first conductive line. Each of the second conductive lines has a width such that a first routing track adjacent to the first conductive line is available for routing or a second routing track adjacent to one of the plurality of second conductive lines is available for routing.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Inventors: CHIEN-JU CHAO, FANG-YU FAN, YI-CHUIN TSAI, KUO-NAN YANG, CHUNG-HSING WANG
  • Patent number: 11239154
    Abstract: In some embodiments, a fishbone structure in a power network includes a first conductive segment in a first conductive layer running in a first direction, a plurality of second conductive segments in a second conductive layer running in a second direction and a plurality of interlayer vias between the first conductive layer and the second conductive layer. The second direction is substantially vertical to the first direction. The plurality of second conductive segments overlap with the first conductive segment. The plurality of interlayer vias are formed at where the plurality of second conductive segments overlap with the first conductive segment. Each of the plurality of second conductive segments has a width such that the first conductive segment has a first unit spacing with a first adjacent conductive line or one of the plurality of second conductive segments has a second unit spacing with a second adjacent conductive line.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: February 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chien-Ju Chao, Fang-Yu Fan, Yi-Chuin Tsai, Kuo-Nan Yang, Chung-Hsing Wang
  • Patent number: 11228316
    Abstract: Disclosed are methods, systems and devices for distribution of a timing signal among operational nodes of a circuit device comprising one or more circuit dies. In one implementation, a timing signal distribution network may transmit a timing signal to one or more operational circuit nodes formed on a circuit die and a clock circuit may generate a first clock signal for transmission as the timing signal to the one or more operational circuit nodes. A switch circuit may apply a second clock signal for transmission as the timing signal in lieu of the first clock signal if the circuit die is integrated at least one of the one or more other circuit dies. In another implementation, timing signals received at timing signal terminals of at least two of two or more of operational circuit nodes may be synchronized independently of the timing signal distribution network.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: January 18, 2022
    Assignee: Arm Limited
    Inventors: Xiaoqing Xu, Saurabh Pijuskumar Sinha, Sheng-En Hung, Chien-Ju Chao
  • Publication number: 20210028788
    Abstract: Disclosed are methods, systems and devices for distribution of a timing signal among operational nodes of a circuit device comprising one or more circuit dies. In one implementation, a timing signal distribution network may transmit a timing signal to one or more operational circuit nodes formed on a circuit die and a clock circuit may generate a first clock signal for transmission as the timing signal to the one or more operational circuit nodes. A switch circuit may apply a second clock signal for transmission as the timing signal in lieu of the first clock signal if the circuit die is integrated at least one of the one or more other circuit dies. In another implementation, timing signals received at timing signal terminals of at least two of two or more of operational circuit nodes may be synchronized independently of the timing signal distribution network.
    Type: Application
    Filed: July 25, 2019
    Publication date: January 28, 2021
    Inventors: Xiaoqing Xu, Saurabh Pijuskumar Sinha, Sheng-En Hung, Chien-Ju Chao
  • Patent number: 10643986
    Abstract: A device comprises a first interconnect structure over a first active device layer, a first power circuit in the first active device layer, a second active device layer over and in contact with the first interconnect structure, a first switch in the second active device layer, a second interconnect structure over and in contact with the second active device layer, a third active device layer over and in contact with the second interconnect structure, a second power circuit in the third active device layer and a third interconnect structure over and in contact with the third active device layer and connected to a power source, wherein the power source is configured to provide power to the first power circuit through the first switch.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: May 5, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chien-Ju Chao, Chou-Kun Lin, Yi-Chuin Tsai, Yen-Hung Lin, Po-Hsiang Huang, Kuo-Nan Yang, Chung-Hsing Wang
  • Publication number: 20190006346
    Abstract: A device comprises a first interconnect structure over a first active device layer, a first power circuit in the first active device layer, a second active device layer over and in contact with the first interconnect structure, a first switch in the second active device layer, a second interconnect structure over and in contact with the second active device layer, a third active device layer over and in contact with the second interconnect structure, a second power circuit in the third active device layer and a third interconnect structure over and in contact with the third active device layer and connected to a power source, wherein the power source is configured to provide power to the first power circuit through the first switch.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 3, 2019
    Inventors: Chien-Ju Chao, Chou-Kun Lin, Yi-Chuin Tsai, Yen-Hung Lin, Po-Hsiang Huang, Kuo-Nan Yang, Chung-Hsing Wang
  • Patent number: 10074641
    Abstract: Embodiments of mechanisms for forming power gating cells and virtual power circuits on multiple active device layers are described in the current disclosure. Power gating cells and virtual power circuits are formed on separate active device layers to allow interconnect structure for connecting with the power source be formed on a separate level from the interconnect structure for connecting the power gating cells and the virtual power circuits. Such separation prevents these two types of interconnect structures from competing for the same space. Routings for both types of interconnect structures become easier. As a result, metal lengths of interconnect structures are reduced and the metal widths are increased. Reduced metal lengths and increased metal widths reduce resistance, improves resistance-capacitance (RC) delay and electrical performance, and improves interconnect reliability, such as reducing electro-migration.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: September 11, 2018
    Assignee: Taiwan Semicondcutor Manufacturing Company
    Inventors: Chien-Ju Chao, Chou-Kun Lin, Yi-Chuin Tsai, Yen-Hung Lin, Po-Hsiang Huang, Kuo-Nan Yang, Chung-Hsing Wang
  • Patent number: 9984192
    Abstract: An embodiment cell shift scheme includes abutting a first transistor cell against a second transistor cell and shifting a place and route boundary away from a polysilicon disposed between the first transistor cell and the second transistor cell. In an embodiment, the cell shift scheme includes shifting the place and route boundary to prevent a mismatch between a layout versus schematic (LVS) netlist and a post-simulation netlist.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: May 29, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kuo-Nan Yang, Chou-Kun Lin, Jerry Chang-Jui Kao, Yi-Chuin Tsai, Chien-Ju Chao, Chung-Hsing Wang
  • Publication number: 20180047716
    Abstract: Embodiments of mechanisms for forming power gating cells and virtual power circuits on multiple active device layers are described in the current disclosure. Power gating cells and virtual power circuits are formed on separate active device layers to allow interconnect structure for connecting with the power source be formed on a separate level from the interconnect structure for connecting the power gating cells and the virtual power circuits. Such separation prevents these two types of interconnect structures from competing for the same space. Routings for both types of interconnect structures become easier. As a result, metal lengths of interconnect structures are reduced and the metal widths are increased. Reduced metal lengths and increased metal widths reduce resistance, improves resistance-capacitance (RC) delay and electrical performance, and improves interconnect reliability, such as reducing electro-migration.
    Type: Application
    Filed: October 23, 2017
    Publication date: February 15, 2018
    Inventors: Chien-Ju Chao, Chou-Kun Lin, Yi-Chuin Tsai, Yen-Hung Lin, Po-Hsiang Huang, Kuo-Nan Yang, Chung-Hsing Wang
  • Patent number: 9799639
    Abstract: Embodiments of mechanisms for forming power gating cells and virtual power circuits on multiple active device layers are described in the current disclosure. Power gating cells and virtual power circuits are formed on separate active device layers to allow interconnect structure for connecting with the power source be formed on a separate level from the interconnect structure for connecting the power gating cells and the virtual power circuits. Such separation prevents these two types of interconnect structures from competing for the same space. Routings for both types of interconnect structures become easier. As a result, metal lengths of interconnect structures are reduced and the metal widths are increased. Reduced metal lengths and increased metal widths reduce resistance, improves resistance-capacitance (RC) delay and electrical performance, and improves interconnect reliability, such as reducing electro-migration.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: October 24, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Ju Chao, Chou-Kun Lin, Yi-Chuin Tsai, Yen-Hung Lin, Po-Hsiang Huang, Kuo-Nan Yang, Chung-Hsing Wang
  • Patent number: 9564896
    Abstract: A circuit is disclosed that includes a plurality of voltage control circuits and a control module. Each of the voltage control circuits is controlled by a control signal. The control module is configured to generate the control signal and to determine a voltage level or a pulse width of the control signal in accordance with a current process corner condition of the voltage control circuits and at least one of first predetermined data and second predetermined data.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: February 7, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jerry Chang-Jui Kao, Chien-Ju Chao, Chin-Shen Lin, Nitesh Katta, Kuo-Nan Yang, Chung-Hsing Wang
  • Patent number: 9509301
    Abstract: A circuit is disclosed that includes a plurality of voltage control circuits. Each voltage control circuit of the voltage control circuits includes a driver circuit and a switch circuit. The driver circuit is configured to receive a control signal having a series of pulses. The switch circuit is configured to generate a driving voltage when being turned on. The driver circuit alternately turns on and off the switch circuit in accordance with the series of pulses.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 29, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jerry Chang-Jui Kao, Chien-Ju Chao, Chou-Kun Lin, Chin-Shen Lin, King-Ho Tam, Kuo-Nan Yang, Chung-Hsing Wang
  • Publication number: 20160211212
    Abstract: In some embodiments, a fishbone structure in a power network includes a first conductive segment in a first conductive layer running in a first direction, a plurality of second conductive segments in a second conductive layer running in a second direction and a plurality of interlayer vias between the first conductive layer and the second conductive layer. The second direction is substantially vertical to the first direction. The plurality of second conductive segments overlap with the first conductive segment. The plurality of interlayer vias are formed at where the plurality of second conductive segments overlap with the first conductive segment. Each of the plurality of second conductive segments has a width such that the first conductive segment has a first unit spacing with a first adjacent conductive line or one of the plurality of second conductive segments has a second unit spacing with a second adjacent conductive line.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 21, 2016
    Inventors: CHIEN-JU CHAO, FANG-YU FAN, YI-CHUIN TSAI, KUO-NAN YANG, CHUNG-HSING WANG
  • Publication number: 20160197068
    Abstract: Embodiments of mechanisms for forming power gating cells and virtual power circuits on multiple active device layers are described in the current disclosure. Power gating cells and virtual power circuits are formed on separate active device layers to allow interconnect structure for connecting with the power source be formed on a separate level from the interconnect structure for connecting the power gating cells and the virtual power circuits. Such separation prevents these two types of interconnect structures from competing for the same space. Routings for both types of interconnect structures become easier. As a result, metal lengths of interconnect structures are reduced and the metal widths are increased. Reduced metal lengths and increased metal widths reduce resistance, improves resistance-capacitance (RC) delay and electrical performance, and improves interconnect reliability, such as reducing electro-migration.
    Type: Application
    Filed: March 15, 2016
    Publication date: July 7, 2016
    Inventors: Chien-Ju Chao, Chou-Kun Lin, Yi-Chuin Tsai, Yen-Hung Lin, Po-Hsiang Huang, Kuo-Nan Yang, Chung-Hsing Wang
  • Patent number: 9367660
    Abstract: In some embodiments, in a method, cell layouts of a plurality of cells are received. For each cell, a respective constraint that affects a geometry of an interconnect to be coupled to an output pin of the cell in a design layout is determined based on a geometry of the output pin of the cell in the cell layout.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: June 14, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Nitesh Katta, Jerry Chang-Jui Kao, Chin-Shen Lin, Yi-Chuin Tsai, Chien-Ju Chao, Kuo-Nan Yang, Chung-Hsing Wang
  • Publication number: 20160162619
    Abstract: An embodiment cell shift scheme includes abutting a first transistor cell against a second transistor cell and shifting a place and route boundary away from a polysilicon disposed between the first transistor cell and the second transistor cell. In an embodiment, the cell shift scheme includes shifting the place and route boundary to prevent a mismatch between a layout versus schematic (LVS) netlist and a post-simulation netlist.
    Type: Application
    Filed: February 15, 2016
    Publication date: June 9, 2016
    Inventors: Kuo-Nan Yang, Chou-Kun Lin, Jerry Chang-Jui Kao, Yi-Chuin Tsai, Chien-Ju Chao, Chung-Hsing Wang
  • Patent number: 9287257
    Abstract: Embodiments of mechanisms for forming power gating cells and virtual power circuits on multiple active device layers are described in the current disclosure. Power gating cells and virtual power circuits are formed on separate active device layers to allow interconnect structure for connecting with the power source be formed on a separate level from the interconnect structure for connecting the power gating cells and the virtual power circuits. Such separation prevents these two types of interconnect structures from competing for the same space. Routings for both types of interconnect structures become easier. As a result, metal lengths of interconnect structures are reduced and the metal widths are increased. Reduced metal lengths and increased metal widths reduce resistance, improves resistance-capacitance (RC) delay and electrical performance, and improves interconnect reliability, such as reducing electro-migration.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: March 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Ju Chao, Chou-Kun Lin, Yi-Chuin Tsai, Yen-Hung Lin, Po-Hsiang Huang, Kuo-Nan Yang, Chung-Hsing Wang
  • Patent number: 9262573
    Abstract: An embodiment cell shift scheme includes abutting a first transistor cell against a second transistor cell and shifting a place and route boundary away from a polysilicon disposed between the first transistor cell and the second transistor cell. In an embodiment, the cell shift scheme includes shifting the place and route boundary to prevent a mismatch between a layout versus schematic (LVS) netlist and a post-simulation netlist.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: February 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Nan Yang, Chou-Kun Lin, Jerry Chang-Jui Kao, Yi-Chuin Tsai, Chien-Ju Chao, Chung-Hsing Wang