Patents by Inventor Chien-Min Weng

Chien-Min Weng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140071533
    Abstract: The invention relates to a transparent conductive film. The transparent conductive film has a plastic film substrate, whose two surfaces are provided in sequence with at least two undercoat layers and a patterned transparent conductive layer, respectively. The invention overcomes the drawback of image deterioration caused by the patterning of the transparent conductive layers and reduces the optical difference between the patterned regions and the non-patterned regions by adjusting the refractive indexes and thicknesses of the various layers.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 13, 2014
    Inventors: TING-CHING KUO, JYR-DWO LEE, SHIH-LIANG CHOU, CHIEN-MIN WENG, TZU-WEN CHU
  • Patent number: 8580353
    Abstract: A method for treating a surface of a glass substrate according to the invention has the steps of placing the glass substrate into a vacuum treatment chamber, introducing a gas into the vacuum treatment chamber, providing electric power to generate an ion source and using the ion source to treat the surface of the glass substrate. By this way, the invention can achieve an effect of surface cleaning and further render the conductive film to be coated on the glass substrate in the subsequent stage to have a reduced surface resistance, thereby improving the conductivity of the glass substrate. The film coated on the glass substrate in the subsequent stage will have higher crystalline level as well.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: November 12, 2013
    Assignee: Applied Vacuum Coating Technologies Co., Ltd.
    Inventors: Chien-Min Weng, Shih-Liang Chou, Tzu-Wen Chu, Fu-Jen Wang
  • Publication number: 20120247953
    Abstract: The invention relates to a film coating system. The system includes serially arranged working zones including a rough vacuum feeding section, a high vacuum feeding section, an optical layer coating zone, a pretreatment zone, a transparent conductive layer coating zone and a pressure balanced exhausting zone. The system further includes a conveyor device for carrying a substrate which has been provided on its periphery with an ink frame layer and for delivering the substrate to the respective working zones, and a controlling device that controls the times for the substrate to be retained in the respective working zones based upon a time interval between the entry of two successive conveyor devices into the rough vacuum feeding section. The invention ensures a smooth operation of the production line, and the transparent conductive film coated thereby does not easily exfoliate and exhibits the advantageous properties of high optical performance and low surface resistance.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 4, 2012
    Inventors: CHIEN-MIN WENG, Shih-Liang Chou, Tzu-Wen Chu, Fu-Jen Wang, Feng-Shiang Yao
  • Publication number: 20120213949
    Abstract: The invention relates to a method for producing a transparent indium tin oxide conductive layer on a substrate. The method involves using a target having a low indium-to-tin ratio in a low temperature manufacturing process (less than 200° C.), and introducing a plasma gas and a reaction gas into the reaction chamber to allow sputtering of an indium tin oxide layer on the substrate under a low oxygen environment, followed by subjecting the sputtered substrate to a heat treatment at 150˜200° C. for 60˜90 minutes. The indium tin oxide layer thus produced will crystallize completely and have the advantageous properties of low surface resistance and high uniformity.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Inventors: CHIEN-MIN WENG, SHIH-LIANG CHOU, TZU-WEN CHU, FU-JEN WANG, FENG-SHIANG YAO
  • Patent number: 8245535
    Abstract: A method of strengthening glass plate is provided. A plasma treating process is performed on a glass plate so that a surface pore variation of the glass plate after the plasma treating process is reduced relative to the surface pore variation of the glass plate before the plasma treating process, wherein the surface pore variation is a variation degree of surface pores in different unit areas of the glass plate. In the mean time, a melted network crosslinking structure is formed on the surface of the glass plate. Based on the above-mentioned mechanisms, the glass plate is strengthened. The plasma treating process is conducive to strengthen the glass plate whether the plasma treating process is performed before or after the conventional chemical strengthening process.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: August 21, 2012
    Assignees: Applied Vacuum Coating Technologies Co., Ltd., Avct Optical Electronic Co., Ltd.
    Inventors: Chien-Min Weng, Tzu-Wen Chu, Chiao-Ning Huang, Fu-Jen Wang, Shih-Liang Chou, I-Wen Lee, Ching-Hsiu Cheng
  • Publication number: 20120050173
    Abstract: The present invention proposes a surface capacitive integrated touch panel and manufacturing method thereof. The touch panel comprises a transparent substrate, an icon or artwork layer coated on the periphery of one side face of the transparent substrate, and the inner periphery of the icon layer is not perpendicular to the adjacent line of the transparent substrate. It also comprises a sensing layer which is stacked on icon layer or artwork layer and the areas on the transparent substrate uncovered with the icon layer or artwork layer. Other than that, it comprises a metal layout and an electrode pattern which are formed from the outer of the icon layer to its inner side. The electrode pattern is formed via coating, printing or spraying. This unconventional way of laminating the electrode pattern structures can effectively lower the overall thickness of the panel and increase yield rate.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 1, 2012
    Applicants: AVCT OPTICAL ELECTRONIC CO., LTD., APPLIED VACUUM COATING TECHNOLOGIES CO., LTD.
    Inventors: SHIH-LIANG CHOU, HSUEH-CHIH CHIANG, CHIEN-MIN WENG, JYH-AN CHEN, SHR-LUNG CHEN, I-WEN LEE, HSING-YEH CHEN
  • Publication number: 20120050225
    Abstract: A touch panel includes a transparent substrate, an electrically conductive icon or artwork layer, a first icon or artwork layer, a sensing layer, a metal layout and an electrode pattern. The electrically conductive icon or artwork layer is disposed between the transparent substrate and the first icon or artwork layer. The first icon or artwork layer is so coated as to extend over the periphery of the electrically conductive icon or artwork layer. The electrically conductive icon or artwork layer is electrically connected to a grounding trace to impart the touch panel an improved anti-electromagnetic interference capability, thereby ameliorating the problem of false actuation that frequently occurs between the icon or artwork layer and the sensing layer in the conventional devices.
    Type: Application
    Filed: December 10, 2010
    Publication date: March 1, 2012
    Inventors: SHIH-LIANG CHOU, Hsueh-Chih Chiang, Chien-Min Weng, Jyh-An Chen, Shr-Lung Chen, I-Wen Lee, Hsing-Yeh Chen
  • Publication number: 20120009354
    Abstract: A method for treating a surface of a glass substrate according to the invention has the steps of placing the glass substrate into a vacuum treatment chamber, introducing a gas into the vacuum treatment chamber, providing electric power to generate an ion source and using the ion source to treat the surface of the glass substrate. By this way, the invention can achieve an effect of surface cleaning and further render the conductive film to be coated on the glass substrate in the subsequent stage to have a reduced surface resistance, thereby improving the conductivity of the glass substrate. The film coated on the glass substrate in the subsequent stage will have higher crystalline level as well.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Inventors: CHIEN-MIN WENG, Shih-Liang Chou, Tzu-Wen Chu, Fu-Jen Wang
  • Publication number: 20120009392
    Abstract: The substrate according to the invention includes at least one surface coated with an organic buffer layer and the organic buffer layer is provided with a coating layer on a surface thereof opposite to its surface attached to the substrate. The provision of the organic buffer layer diminishes the effect of the coating layer on the strength of the substrate, thereby maintaining the strength of the substrate.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Inventors: SHIH-LIANG CHOU, Chien-Min Weng, Hsueh-Chih Chiang, I-Wen Lee, Hsing-Yeh Chen
  • Publication number: 20110234507
    Abstract: The present invention provides an integrated touch panel comprising a transparent substrate, one of an icon or artwork layer, a first layer of optical film, and a first sensing layer. The icon layer or artwork layer is coated on the periphery of one side face of the transparent substrate, and the inner periphery of the icon layer or artwork layer is not perpendicular to the adjacent line of the transparent substrate. The first layer of optical film is stacked on icon layer or artwork layer and the areas on the transparent substrate uncovered with icon layer. The first sensing layer is stacked on the first layer of optical film by sputtering. The interchangeability is included in the patent claim of the present invention. As icon layer or artwork layer is not perpendicular to the transparent substrate, the subsequent cladding of the structures may be completed by sputtering or other methods.
    Type: Application
    Filed: July 30, 2010
    Publication date: September 29, 2011
    Applicants: APPLIED VACUUM COATING TECHNOLOGIES CO., LTD., AVCT OPTICAL ELECTRONIC CO., LTD.
    Inventors: SHIH-LIANG CHOU, HSUEH-CHIH CHIANG, CHIEN-MIN WENG, TZU-WEN CHU, FU-JEN WANG, I-WEN LEE, HSING-YEH CHEN
  • Publication number: 20110056244
    Abstract: A method of strengthening glass plate is provided. A plasma treating process is performed on a glass plate so that a surface pore variation of the glass plate after the plasma treating process is reduced relative to the surface pore variation of the glass plate before the plasma treating process, wherein the surface pore variation is a variation degree of surface pores in different unit areas of the glass plate. In the mean time, a melted network crosslinking structure is formed on the surface of the glass plate. Based on the above-mentioned mechanisms, the glass plate is strengthened. The plasma treating process is conducive to strengthen the glass plate whether the plasma treating process is performed before or after the conventional chemical strengthening process.
    Type: Application
    Filed: October 8, 2009
    Publication date: March 10, 2011
    Applicants: APPLIED VACUUM COATING TECHNOLOGIES CO., LTD., AVCT OPTICAL ELECTRONIC CO., LTD
    Inventors: Chien-Min Weng, Tzu-Wen Chu, Chiao-Ning Huang, Fu-Jen Wang, Shih-Liang Chou, I-Wen Lee, Ching-Hsiu Cheng
  • Patent number: 7867634
    Abstract: A ITO layer structure, which is composed of the ITO as the outermost layer and the first anti-reflected layer on the specific side of the transparent substrate, furthermore, the second anti-reflected layer is formed on the opposite side of substrate, can improve the total transmittance.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: January 11, 2011
    Assignee: Applied Vacuum Coating Technologies Co., Ltd.
    Inventors: Jau-Jier Chu, I-Wen Lee, Shih-Liang Chou, Po-Yao Lai, Chien-Min Weng
  • Publication number: 20100215931
    Abstract: A ITO layer structure, which is composed of the ITO as the outermost layer and the first anti-reflected layer on the specific side of the transparent substrate, furthermore, the second anti-reflected layer is formed on the opposite side of substrate, can improve the total transmittance.
    Type: Application
    Filed: December 10, 2007
    Publication date: August 26, 2010
    Inventors: Jau-Jier Chu, I-Wen Lee, Shih-Liang Chou, Po-Yao Lai, Chien-Min Weng
  • Publication number: 20100214230
    Abstract: A two-stage manufacturing process for preparation of an ITO layer includes having first a transparent substrate, e.g., a glass or plastic substrate going through treatment without preheating; the substrate is then sputtering processed in a sputtering chamber under process conditions without heating up to form a amorphous state ITO film on the surface of the transparent substrate; followed with a thermal treatment at a preset temperature to turn the ITO layer into a crystalline state without compromising strength of the glass or the plastic substrate while delivering a durable ITO layer and a structure of ITO layer provided with a specific sheet resistance and/or thickness. The ITO layer produced using the present invention particularly fits to be applied in a touch screen structure.
    Type: Application
    Filed: October 30, 2007
    Publication date: August 26, 2010
    Inventors: Jau-Jier Chu, I-Wen Lee, Shih-Liang Chou, Po-Yao Lai, Chien-Min Weng
  • Publication number: 20100101937
    Abstract: A method of fabricating transparent conductive film including the following steps is provided. First, a reactive chamber having at least a target and at least a heating device is provided. Subsequentially, a plasma is generated in the reactive chamber, wherein the plasma is located above the target. Next, the plasma is heated by the heating device from a standby temperature to a working temperature. Simultaneously, a hard plastic substrate is passed above the plasma at a specific speed, wherein the particles of the target are bombarded by the plasma so as to form transparent conductive film on the hard plastic substrate.
    Type: Application
    Filed: October 29, 2008
    Publication date: April 29, 2010
    Applicant: Applied Vacuum Coating Technologies Co., Ltd.
    Inventors: Chien-Min Weng, Tzu-Wen Chu, Chiao-Ning Huang, I-Wen Lee, Shih-Liang Chou
  • Publication number: 20070259190
    Abstract: A method for producing an ITO transparent substrate with a high resistance at a low-temperature sputtering process is provided for mass production. The method is characterized by: a film of ITO mixed with metallic-oxide target and coated with multiple layers provides a transparent capacity. The film can be produced via a production line and further heated and annealed for stabilizing the high resistance thereof.
    Type: Application
    Filed: May 2, 2006
    Publication date: November 8, 2007
    Inventors: Jau-Jier Chu, Chien-Min Weng, Shih-Liang Chou
  • Publication number: 20070193876
    Abstract: A manufacturing method for sputtering an anti-refection layer onto a board at low temperature has the merits of easily being implemented and easily mass-produced. The manufacturing method is used for sputtering multiple anti-refection layers onto a board. The method can be used for mass-producing anti-reflection panels as the raw material for the photo industry. The method is superior to the manufacturing method for producing nebulization anti-reflection panels. This invention utilizes the anti-reflection characteristics of the board structure that is sputtered and stacked alternatively with high index refraction layers and low index refraction layers. A continuous manufacturing process is adopted. The present invention uses plasma to clean the surface of the boards and adopts a traditional sputtering machine. Therefore, it is convenient for installing and mass-producing high quality material.
    Type: Application
    Filed: February 22, 2006
    Publication date: August 23, 2007
    Inventors: Jau-Jier Chu, Hsu-Fu Hung, I-Wen Lee, Chien-Min Weng, Chao-Lan Lee
  • Publication number: 20070119702
    Abstract: A method for sputtering a multilayer film on a sheet workpiece at a low temperature of the present invention has the following steps: employing plasma to clean a surface of a sheet workpiece, sputtering at least one metal oxide or semiconductor oxide on the sheet workpiece, and sputtering at least one ITO transparent electric layer on the sheet workpiece. The film sputtering process of the sheet workpiece employs continuously connecting work stations, thereby controlling delay time between the work stations of the sheet workpiece within a given range. The sheet workpiece is made from a macromolecular material.
    Type: Application
    Filed: November 30, 2005
    Publication date: May 31, 2007
    Inventors: Jau-Jier Chu, Hsu-Fu Hung, I-Wen Lee, Chien-Min Weng, Tzu-Wen Chu
  • Publication number: 20070119704
    Abstract: A method for sputtering a multilayer film on a sheet workpiece at a low temperature of the present invention has the following steps: employing plasma to modify a surface of a sheet workpiece, providing a reciprocating sputtering process to deposit metal oxide layers or semiconductor oxide layers on the sheet workpiece, preheating the sheet workpiece and providing a reciprocating ITO sputtering process to sputter ITO transparent conductive layers on the sheet workpiece. The film sputtering process of the sheet workpiece employs continuously connecting work line and controls delay time between the sputtering units to deposit a film with a predetermined thickness on the sheet workpiece.
    Type: Application
    Filed: January 29, 2007
    Publication date: May 31, 2007
    Inventors: Jau-Jier Chu, Hsu-Fu Hung, I-Wen Lee, Chien-Min Weng, Tzu-Wen Chu