Patents by Inventor Chien-Nan Tu

Chien-Nan Tu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240387584
    Abstract: A shielding structure of air gaps, formed on a grid structure between pixel sensors in a pixel array, reduces crosstalk. Efficiency and signal-to-noise ratio of the pixel sensors is increased because crosstalk is reduced. The shielding structure also increases quantum efficiency of the pixel array because the air gaps do not adsorb photons.
    Type: Application
    Filed: May 17, 2023
    Publication date: November 21, 2024
    Inventors: ChunHao LIN, Yun-Wei CHENG, Kuo-Cheng LEE, Chien Nan TU
  • Publication number: 20240355847
    Abstract: A CMOS image sensor includes a unit pixel array including a photodiode array, a color filter array, a micro-lens array, and a grid isolation structure laterally separating adjacent color filters. The grid isolation structure includes a first low-n grid, a second low-n grid underlying the first low-n grid, and a metal grid within the second low-n grid, the first low-n grid being narrower than the second low-n grid. The color filter array includes color filter matrixes, all color filter matrixes have the same arrangement pattern. Sizes of color filters in each color filter matrix vary depending on locations of the color filters in the color filter matrix. In an edge portion, a distance between a center of a color filter matrix and a center of a corresponding unit pixel matrix in plan view varies depending on a location of the unit pixel matrix in the CMOS image sensor.
    Type: Application
    Filed: April 20, 2023
    Publication date: October 24, 2024
    Inventors: Ming-Hsien YANG, Wei-Chih WENG, Chun-Wei CHIA, Chun-Hao CHOU, Tse Yu TU, Chien Nan TU, Chun-Liang LU, Kuo-Cheng LEE
  • Publication number: 20240274632
    Abstract: A semiconductor device includes a plurality of photodiodes, a semiconductor structure, a dielectric layer, a color filter layer, and a micro-lens. The semiconductor structure overlaps the photodiodes. The semiconductor structure includes a plurality of microstructures on a backside of the semiconductor structure. The dielectric layer is over the microstructures of the semiconductor structure. A thickness of the dielectric layer is less than a vertical distance from one of the photodiodes to one of the microstructures. The color filter layer is over the dielectric layer. The micro-lens is over the color filter layer.
    Type: Application
    Filed: April 25, 2024
    Publication date: August 15, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Nan TU, Yu-Lung YEH, Hsing-Chih LIN, Chien-Chang HUANG, Shih-Shiung CHEN
  • Publication number: 20240274636
    Abstract: A pixel sensor array of an image sensor device described herein may include a deep trench isolation (DTI) structure that includes a plurality of DTI portions that extend into a substrate of the image sensor device. Two or more subsets of the plurality of DTI portions may extend around photodiodes of a pixel sensor of the pixel sensor array, and may extend into the substrate to different depths. The different depths enable the photocurrents generated by the photodiodes to be binned and used to generate unified photocurrent. In particular, the different depths enable photons to intermix in the photodiodes, which enables quadradic phase detection (QPD) binning for increased PDAF performance. The increased PDAF performance may include increased autofocus speed, increased high dynamic range, increased quantum efficiency (QE), and/or increased full well conversion (FWC), among other examples.
    Type: Application
    Filed: February 15, 2023
    Publication date: August 15, 2024
    Inventors: Ming-Hsien YANG, Chun-Hao CHOU, Kuo-Cheng LEE, Chien Nan TU, Chun-Wei CHIA, Tse-Yu TU, Ya-Min HUNG, Cheng-Hao CHIU, Chun-Liang LU
  • Patent number: 11996429
    Abstract: A semiconductor device includes a device layer, a semiconductor layer, a sensor element, a dielectric layer, a color filter layer, and a micro-lens. The semiconductor layer is over the device layer. The semiconductor layer has a plurality of microstructures thereon. Each of the microstructures has a substantially triangular cross-section. The sensor element is under the microstructures of the semiconductor layer and is configured to sense incident light. The dielectric layer is over the microstructures of the semiconductor layer. The color filter layer is over the dielectric layer. The micro-lens is over the color filter layer.
    Type: Grant
    Filed: November 14, 2021
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Nan Tu, Yu-Lung Yeh, Hsing-Chih Lin, Chien-Chang Huang, Shih-Shiung Chen
  • Patent number: 11990493
    Abstract: An image sensor device is provided. The image sensor device includes a semiconductor substrate having a front surface, a back surface opposite to the front surface, and a light-sensing region close to the front surface. The image sensor device includes an insulating layer covering the back surface and extending into the semiconductor substrate. The protection layer has a first refractive index, and the first refractive index is less than a second refractive index of the semiconductor substrate and greater than a third refractive index of the insulating layer, and the protection layer conformally and continuously covers the back surface and extends into the semiconductor substrate. The image sensor device includes a reflective structure surrounded by insulating layer in the semiconductor substrate.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: May 21, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Chieh Fang, Ming-Chi Wu, Ji-Heng Jiang, Chi-Yuan Wen, Chien-Nan Tu, Yu-Lung Yeh, Shih-Shiung Chen, Kun-Yu Lin
  • Publication number: 20230387150
    Abstract: An image sensor with high quantum efficiency is provided. In some embodiments, a semiconductor substrate includes a non-porous semiconductor layer along a front side of the semiconductor substrate. A periodic structure is along a back side of the semiconductor substrate. A high absorption layer lines the periodic structure on the back side of the semiconductor substrate. The high absorption layer is a semiconductor material with an energy bandgap less than that of the non-porous semiconductor layer. A photodetector is in the semiconductor substrate and the high absorption layer. A method for manufacturing the image sensor is also provided.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 30, 2023
    Inventors: Chien-Chang Huang, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh, Ji Heng Jiang
  • Patent number: 11830892
    Abstract: An image sensor with high quantum efficiency is provided. In some embodiments, a semiconductor substrate includes a non-porous semiconductor layer along a front side of the semiconductor substrate. A periodic structure is along a back side of the semiconductor substrate. A high absorption layer lines the periodic structure on the back side of the semiconductor substrate. The high absorption layer is a semiconductor material with an energy bandgap less than that of the non-porous semiconductor layer. A photodetector is in the semiconductor substrate and the high absorption layer. A method for manufacturing the image sensor is also provided.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: November 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Chang Huang, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh, Ji Heng Jiang
  • Publication number: 20220278159
    Abstract: An image sensor device is provided. The image sensor device includes a semiconductor substrate having a front surface, a back surface opposite to the front surface, and a light-sensing region close to the front surface. The image sensor device includes an insulating layer covering the back surface and extending into the semiconductor substrate. The protection layer has a first refractive index, and the first refractive index is less than a second refractive index of the semiconductor substrate and greater than a third refractive index of the insulating layer, and the protection layer conformally and continuously covers the back surface and extends into the semiconductor substrate. The image sensor device includes a reflective structure surrounded by insulating layer in the semiconductor substrate.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 1, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh FANG, Ming-Chi WU, Ji-Heng JIANG, Chi-Yuan WEN, Chien-Nan TU, Yu-Lung YEH, Shih-Shiung CHEN, Kun-Yu LIN
  • Publication number: 20220238572
    Abstract: A method includes etching a semiconductor substrate to form a trench, filling a dielectric layer into the trench, with a void being formed in the trench and between opposite portions of the dielectric layer, etching the dielectric layer to reveal the void, forming a diffusion barrier layer on the dielectric layer, and forming a high-reflectivity metal layer on the diffusion barrier layer. The high-reflectivity metal layer has a portion extending into the trench. A remaining portion of the void is enclosed by the high-reflectivity metal layer.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Ming-Chi Wu, Chun-Chieh Fang, Bo-Chang Su, Chien Nan Tu, Yu-Lung Yeh, Kun-Yu Lin, Shih-Shiung Chen
  • Patent number: 11393937
    Abstract: The present disclosure relates to an integrated chip that has a light sensing element arranged within a substrate. An absorption enhancement structure is arranged along a back-side of the substrate, and an interconnect structure is arranged along a front-side of the substrate. A reflection structure includes a dielectric structure and a plurality of semiconductor pillars that matingly engage the dielectric structure. The dielectric structure and semiconductor pillars are arranged along the front-side of the substrate and are spaced between the light sensing element and the interconnect structure. The plurality of semiconductor pillars and the dielectric structure are collectively configured to reflect incident light that has passed through the absorption enhancement structure and through the light sensing element back towards the light sensing element before the incident light strikes the interconnect structure.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: July 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Han Huang, Chien Nan Tu, Chi-Yuan Wen, Ming-Chi Wu, Yu-Lung Yeh, Hsin-Yi Kuo
  • Patent number: 11342372
    Abstract: An image sensor device is provided. The image sensor device includes a semiconductor substrate having a first side, a second side opposite to the first side, and at least one light-sensing region close to the first side. The image sensor device includes a dielectric feature covering the second side and extending into the semiconductor substrate. The dielectric feature in the semiconductor substrate surrounds the light-sensing region. The image sensor device includes a reflective layer in the dielectric feature in the semiconductor substrate, wherein a top portion of the reflective layer protrudes away from the second side, and a top surface of the reflective layer and a top surface of the insulating layer are substantially coplanar.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: May 24, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Chieh Fang, Ming-Chi Wu, Ji-Heng Jiang, Chi-Yuan Wen, Chien-Nan Tu, Yu-Lung Yeh, Shih-Shiung Chen, Kun-Yu Lin
  • Patent number: 11302734
    Abstract: A method includes etching a semiconductor substrate to form a trench, filling a dielectric layer into the trench, with a void being formed in the trench and between opposite portions of the dielectric layer, etching the dielectric layer to reveal the void, forming a diffusion barrier layer on the dielectric layer, and forming a high-reflectivity metal layer on the diffusion barrier layer. The high-reflectivity metal layer has a portion extending into the trench. A remaining portion of the void is enclosed by the high-reflectivity metal layer.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chi Wu, Chun-Chieh Fang, Bo-Chang Su, Chien Nan Tu, Yu-Lung Yeh, Kun-Yu Lin, Shih-Shiung Chen
  • Publication number: 20220077214
    Abstract: A semiconductor device includes a device layer, a semiconductor layer, a sensor element, a dielectric layer, a color filter layer, and a micro-lens. The semiconductor layer is over the device layer. The semiconductor layer has a plurality of microstructures thereon. Each of the microstructures has a substantially triangular cross-section. The sensor element is under the microstructures of the semiconductor layer and is configured to sense incident light. The dielectric layer is over the microstructures of the semiconductor layer. The color filter layer is over the dielectric layer. The micro-lens is over the color filter layer.
    Type: Application
    Filed: November 14, 2021
    Publication date: March 10, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Nan TU, Yu-Lung YEH, Hsing-Chih LIN, Chien-Chang HUANG, Shih-Shiung CHEN
  • Patent number: 11177302
    Abstract: A semiconductor device includes a device layer, a semiconductor layer, a sensor element, a dielectric layer, a color filter layer, and a micro-lens. The semiconductor layer is over the device layer. The semiconductor layer has a plurality of microstructures thereon. Each of the microstructures has a substantially triangular cross-section. The sensor element is under the microstructures of the semiconductor layer and is configured to sense incident light. The dielectric layer is over the microstructures of the semiconductor layer. The color filter layer is over the dielectric layer. The micro-lens is over the color filter layer.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: November 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Nan Tu, Yu-Lung Yeh, Hsing-Chih Lin, Chien-Chang Huang, Shih-Shiung Chen
  • Publication number: 20210119064
    Abstract: The present disclosure relates to an integrated chip that has a light sensing element arranged within a substrate. An absorption enhancement structure is arranged along a back-side of the substrate, and an interconnect structure is arranged along a front-side of the substrate. A reflection structure includes a dielectric structure and a plurality of semiconductor pillars that matingly engage the dielectric structure. The dielectric structure and semiconductor pillars are arranged along the front-side of the substrate and are spaced between the light sensing element and the interconnect structure. The plurality of semiconductor pillars and the dielectric structure are collectively configured to reflect incident light that has passed through the absorption enhancement structure and through the light sensing element back towards the light sensing element before the incident light strikes the interconnect structure.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Inventors: Po-Han Huang, Chien Nan Tu, Chi-Yuan Wen, Ming-Chi Wu, Yu-Lung Yeh, Hsin-Yi Kuo
  • Publication number: 20210091125
    Abstract: An image sensor with high quantum efficiency is provided. In some embodiments, a semiconductor substrate includes a non-porous semiconductor layer along a front side of the semiconductor substrate. A periodic structure is along a back side of the semiconductor substrate. A high absorption layer lines the periodic structure on the back side of the semiconductor substrate. The high absorption layer is a semiconductor material with an energy bandgap less than that of the non-porous semiconductor layer. A photodetector is in the semiconductor substrate and the high absorption layer. A method for manufacturing the image sensor is also provided.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 25, 2021
    Inventors: Chien-Chang Huang, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh, Ji Heng Jiang
  • Patent number: 10879406
    Abstract: The present disclosure relates to an integrated chip that has a light sensing element arranged within a substrate. An absorption enhancement structure is arranged along a back-side of the substrate, and an interconnect structure is arranged along a front-side of the substrate. A reflection structure includes a dielectric structure and a plurality of semiconductor pillars that matingly engage the dielectric structure. The dielectric structure and semiconductor pillars are arranged along the front-side of the substrate and are spaced between the light sensing element and the interconnect structure. The plurality of semiconductor pillars and the dielectric structure are collectively configured to reflect incident light that has passed through the absorption enhancement structure and through the light sensing element back towards the light sensing element before the incident light strikes the interconnect structure.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Han Huang, Chien Nan Tu, Chi-Yuan Wen, Ming-Chi Wu, Yu-Lung Yeh, Hsin-Yi Kuo
  • Patent number: 10868053
    Abstract: An image sensor with high quantum efficiency is provided. In some embodiments, a semiconductor substrate includes a non-porous semiconductor layer along a front side of the semiconductor substrate. A periodic structure is along a back side of the semiconductor substrate. A high absorption layer lines the periodic structure on the back side of the semiconductor substrate. The high absorption layer is a semiconductor material with an energy bandgap less than that of the non-porous semiconductor layer. A photodetector is in the semiconductor substrate and the high absorption layer. A method for manufacturing the image sensor is also provided.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Chang Huang, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh, Ji Heng Jiang
  • Patent number: 10861989
    Abstract: An image sensor with an absorption enhancement semiconductor layer is provided. In some embodiments, the image sensor comprises a front-side semiconductor layer, an absorption enhancement semiconductor layer, and a back-side semiconductor layer that are stacked. The absorption enhancement semiconductor layer is stacked between the front-side and back-side semiconductor layers. The absorption enhancement semiconductor layer has an energy bandgap less than that of the front-side semiconductor layer. Further, the image sensor comprises a plurality of protrusions and a photodetector. The protrusions are defined by the back-side semiconductor layer, and the photodetector is defined by the front-side semiconductor layer, the absorption enhancement semiconductor layer, and the back-side semiconductor layer.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chi Wu, Chien Nan Tu, Kun-Yu Lin, Shih-Shiung Chen