Patents by Inventor Chien-Shao Tang

Chien-Shao Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10985157
    Abstract: An electrostatic discharge (ESD) protection device for a semiconductor device that includes a gate, a source including a silicide portion having a plurality of source contacts, and a drain including a silicide portion having a plurality of drain contacts, wherein the source and drain are extended away from the gate along a device axis. The ESD device includes a resist protective oxide (RPO) portion located on the semiconductor device in between the plurality of drain contacts and in between the plurality of source contacts, respectively.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: April 20, 2021
    Assignee: ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.
    Inventors: Chien-Shao Tang, Ting-Jui Lin, Hsiang-Ming Chou, Fang-Yu Chang
  • Publication number: 20210091070
    Abstract: An electrostatic discharge (ESD) protection device for a semiconductor device that includes a gate, a source including a silicide portion having a plurality of source contacts, and a drain including a silicide portion having a plurality of drain contacts, wherein the source and drain are extended away from the gate along a device axis. The ESD device includes a resist protective oxide (RPO) portion located on the semiconductor device in between the plurality of drain contacts and in between the plurality of source contacts, respectively.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 25, 2021
    Inventors: CHIEN-SHAO TANG, TING-JUI LIN, HSIANG-MING CHOU, FANG-YU CHANG
  • Patent number: 8995100
    Abstract: There is provided an integrated circuit includes an output driver and a configurable electrostatic discharging (ESD) power clamp element according to embodiments of the present invention. The output driver includes a first semiconductor element having a first conductivity type and electrically connected to a first power rail; and a second semiconductor element having a second conductivity type different from the first conductivity type and electrically connected to a second power rail. Specifically, the configurable ESD power clamp element is coupled between the first power rail and the second power rail to provide ESD protection when configured in a first hardware state, and forms a portion of the output driver when configured in a second hardware state, thereby increasing the design flexibility of the integrated circuit.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: March 31, 2015
    Assignee: Elite Semiconductor Memory Technology Inc.
    Inventors: Hsiang-Ming Chou, Kuo-Liang Pan, Chien-Feng Tseng, Yi-Chiu Tsai, Chien-Shao Tang, Hsin-Han Chen
  • Publication number: 20130249046
    Abstract: There is provided an integrated circuit includes an output driver and a configurable electrostatic discharging (ESD) power clamp element according to embodiments of the present invention. The output driver includes a first semiconductor element having a first conductivity type and electrically connected to a first power rail; and a second semiconductor element having a second conductivity type different from the first conductivity type and electrically connected to a second power rail. Specifically, the configurable ESD power clamp element is coupled between the first power rail and the second power rail to provide ESD protection when configured in a first hardware state, and forms a portion of the output driver when configured in a second hardware state, thereby increasing the design flexibility of the integrated circuit.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 26, 2013
    Inventors: Hsiang-Ming Chou, Kuo-Liang Pan, Chien-Feng Tseng, Yi-Chiu Tsai, Chien-Shao Tang, Hsin-Han Chen
  • Patent number: 8324705
    Abstract: An integrated circuit structure includes a semiconductor substrate; a first well region of a first conductivity type over the semiconductor substrate; a second well region of a second conductivity type opposite the first conductivity type encircling the first well region; and a metal-containing layer over and adjoining the first well region and extending over at least an inner portion of the second well region. The metal-containing layer and the first well region form a Schottky barrier. The integrated circuit structure further includes an isolation region encircling the metal-containing layer; and a third well region of the second conductivity type encircling at least a central portion of the first well region. The third well region has a higher impurity concentration than the second well region, and includes a top surface adjoining the metal-containing layer, and a bottom surface higher than bottom surfaces of the first and the second well regions.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: December 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Shao Tang, Dah-Chuen Ho, Yu-Chang Jong, Zhe-Yi Wang, Yuh-Hwa Chang, Yogendra Yadav
  • Patent number: 8114745
    Abstract: A transistor suitable for high-voltage applications is provided. The transistor is formed on a substrate having a deep well of a first conductivity type. A first well of the first conductivity type and a second well of a second conductivity type are formed such that they are not immediately adjacent each other. The well of the first conductivity type and the second conductivity type may be formed simultaneously as respective wells for low-voltage devices. In this manner, the high-voltage devices may be formed on the same wafer as low-voltage devices with fewer process steps, thereby reducing costs and process time. A doped isolation well may be formed adjacent the first well on an opposing side from the second well to provide further device isolation.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: February 14, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Bau Wu, Chien-Shao Tang, Robin Hsieh, Ruey-Hsin Liu, Shun-Liang Hsu
  • Patent number: 7808069
    Abstract: A high-voltage Schottky diode including a deep P-well having a first width is formed on the semiconductor substrate. A doped P-well is disposed over the deep P-well and has a second width that is less than the width of the deep P-well. An M-type guard ring is formed around the upper surface of the second doped well, A Schottky metal is disposed on an upper surface of the second doped well and the N-type guard ring.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: October 5, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Dah-Chuen Ho, Chien-Shao Tang, Yu-Chang Jong, Zhe-Yi Wang
  • Publication number: 20100203691
    Abstract: A transistor suitable for high-voltage applications is provided. The transistor is formed on a substrate having a deep well of a first conductivity type. A first well of the first conductivity type and a second well of a second conductivity type are formed such that they are not immediately adjacent each other. The well of the first conductivity type and the second conductivity type may be formed simultaneously as respective wells for low-voltage devices. In this manner, the high-voltage devices may be formed on the same wafer as low-voltage devices with fewer process steps, thereby reducing costs and process time. A doped isolation well may be formed adjacent the first well on an opposing side from the second well to provide further device isolation.
    Type: Application
    Filed: April 14, 2010
    Publication date: August 12, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Bau Wu, Chien-Shao Tang, Robin Hsieh, Ruey-Hsin Liu, Shun-Liang Hsu
  • Publication number: 20100164050
    Abstract: A high-voltage Schottky diode including a deep P-well having a first width is fanned on the semiconductor substrate. A doped P-well is disposed over the deep P-well and has a second width that is less than the width of the deep P-well. An M-type guard ring is formed around the upper surface of the second doped well, A Schottky metal is disposed on an upper surface of the second doped well and the N-type guard ring.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Dah-Chuen HO, Chien-Shao TANG, Yu-Chang JONG, Zhe-Yi WANG
  • Patent number: 7719064
    Abstract: A transistor suitable for high-voltage applications is provided. The transistor is formed on a substrate having a deep well of a first conductivity type. A first well of the first conductivity type and a second well of a second conductivity type are formed such that they are not immediately adjacent each other. The well of the first conductivity type and the second conductivity type may be formed simultaneously as respective wells for low-voltage devices. In this manner, the high-voltage devices may be formed on the same wafer as low-voltage devices with fewer process steps, thereby reducing costs and process time. A doped isolation well may be formed adjacent the first well on an opposing side from the second well to provide further device isolation.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: May 18, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Bau Wu, Chien-Shao Tang, Robin Hsieh, Ruey-Hsin Liu, Shun-Liang Hsu
  • Publication number: 20090294865
    Abstract: An integrated circuit structure includes a semiconductor substrate; a first well region of a first conductivity type over the semiconductor substrate; a second well region of a second conductivity type opposite the first conductivity type encircling the first well region; and a metal-containing layer over and adjoining the first well region and extending over at least an inner portion of the second well region. The metal-containing layer and the first well region form a Schottky barrier. The integrated circuit structure further includes an isolation region encircling the metal-containing layer; and a third well region of the second conductivity type encircling at least a central portion of the first well region. The third well region has a higher impurity concentration than the second well region, and includes a top surface adjoining the metal-containing layer, and a bottom surface higher than bottom surfaces of the first and the second well regions.
    Type: Application
    Filed: May 27, 2008
    Publication date: December 3, 2009
    Inventors: Chien-Shao Tang, Dah-Chuen Ho, Yu-Chang Jong, Zhe-Yi Wang, Yuh-Hwa Chang, Yogendra Yadav
  • Patent number: 7608889
    Abstract: A lateral diffusion metal-oxide-semiconductor (LDMOS) structure comprises a gate, a source, a drain and a shallow trench isolation. The shallow trench isolation is formed between the drain and the gate to withstand high voltages, applied to the drain, and is associated with the semiconductor substrate to form a recess. As such, the surface of the shallow trench isolation is lower than the surface of the semiconductor substrate. Optionally, the surface of the shallow trench isolation is lower than the surface of the semiconductor substrate by 300-1500 angstroms.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: October 27, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Dah-Chuen Ho, Chien-Shao Tang, Zhe-Yi Wang, Yu-Chang Jong
  • Publication number: 20090085112
    Abstract: A lateral diffusion metal-oxide-semiconductor (LDMOS) structure comprises a gate, a source, a drain and a shallow trench isolation. The shallow trench isolation is formed between the drain and the gate to withstand high voltages, applied to the drain, and is associated with the semiconductor substrate to form a recess. As such, the surface of the shallow trench isolation is lower than the surface of the semiconductor substrate. Optionally, the surface of the shallow trench isolation is lower than the surface of the semiconductor substrate by 300-1500 angstroms.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Dah-Chuen Ho, Chien-Shao Tang, Zhe-Yi Wang, Yu-Chang Jong
  • Publication number: 20080191291
    Abstract: A transistor suitable for high-voltage applications is provided. The transistor is formed on a substrate having a deep well of a first conductivity type. A first well of the first conductivity type and a second well of a second conductivity type are formed such that they are not immediately adjacent each other. The well of the first conductivity type and the second conductivity type may be formed simultaneously as respective wells for low-voltage devices. In this manner, the high-voltage devices may be formed on the same wafer as low-voltage devices with fewer process steps, thereby reducing costs and process time. A doped isolation well may be formed adjacent the first well on an opposing side from the second well to provide further device isolation.
    Type: Application
    Filed: April 10, 2008
    Publication date: August 14, 2008
    Inventors: Chen-Bau Wu, Chien-Shao Tang, Robin Hsieh, Ruey-Hsin Liu, Shun-Liang Hsu
  • Patent number: 7372104
    Abstract: A transistor suitable for high-voltage applications is provided. The transistor is formed on a substrate having a deep well of a first conductivity type. A first well of the first conductivity type and a second well of a second conductivity type are formed such that they are not immediately adjacent each other. The well of the first conductivity type and the second conductivity type may be formed simultaneously as respective wells for low-voltage devices. In this manner, the high-voltage devices may be formed on the same wafer as low-voltage devices with fewer process steps, thereby reducing costs and process time. A doped isolation well may be formed adjacent the first well on an opposing side from the second well to provide further device isolation.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: May 13, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Bau Wu, Chien-Shao Tang, Robin Hsieh, Ruey-Hsin Liu, Shun-Liang Hsu
  • Publication number: 20080073745
    Abstract: A high-voltage semiconductor structure includes a high-voltage well region overlying a substrate, an isolation region extending from a top surface of the high-voltage well region into the high-voltage well region, a low-voltage well region having at least a portion underlying and adjoining the isolation region wherein the low-voltage well region is inside of and of a same conductivity type as the high-voltage well region, a gate dielectric on the high-voltage well region, a gate electrode on the gate dielectric, and a source/drain region of the same conductivity type as the high-voltage well region, wherein the source/drain region is spaced apart from a channel region by the isolation region.
    Type: Application
    Filed: September 25, 2006
    Publication date: March 27, 2008
    Inventors: Chien-Shao Tang, Tsung-Yi Huang, David Ho, Zhe-Yi Wang, Yu-Chang Jong
  • Publication number: 20070221999
    Abstract: A semiconductor device includes a gate electrode, and a source region and a drain region proximate the gate electrode. A silicide region is disposed over a top surface of the gate electrode, the source region, or the drain region. A non-silicide region is disposed proximate the silicide region over an edge region of the top surface of the gate electrode, the source region, or the drain region.
    Type: Application
    Filed: March 23, 2006
    Publication date: September 27, 2007
    Inventors: Chen-Bau Wu, Jiann-Tyng Tzeng, Chien-Shao Tang
  • Publication number: 20070132033
    Abstract: A transistor suitable for high-voltage applications is provided. The transistor is formed on a substrate having a deep well of a first conductivity type. A first well of the first conductivity type and a second well of a second conductivity type are formed such that they are not immediately adjacent each other. The well of the first conductivity type and the second conductivity type may be formed simultaneously as respective wells for low-voltage devices. In this manner, the high-voltage devices may be formed on the same wafer as low-voltage devices with fewer process steps, thereby reducing costs and process time. A doped isolation well may be formed adjacent the first well on an opposing side from the second well to provide further device isolation.
    Type: Application
    Filed: December 12, 2005
    Publication date: June 14, 2007
    Inventors: Chen-Bau Wu, Chien-Shao Tang, Robin Hsieh, Ruey-Hsin Liu, Shun-Liang Hsu