Patents by Inventor Chien-Te Wu

Chien-Te Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12388426
    Abstract: An integrated circuit includes a semiconductor substrate and a plurality of circuit elements in or on the substrate. The circuit elements are defined by standard layout cells selected from a cell library. The circuit elements including a plurality of flip-flops. Each flip-flop has a data input terminal, a data output terminal, a clock input terminal, and a clock output terminal. A first one of the flip-flops directly abuts a second flip-flop such that the clock output terminal of the first flip-flop electrically connects with the clock input terminal of the second flip-flop.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: August 12, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shao-Yu Steve Wang, Chien-Te Wu, Shang-Chih Hsieh, Nick Tsai
  • Publication number: 20250216605
    Abstract: An optical circuit includes one or more input waveguides, a plurality of output waveguides, and a reflector structure. At least a portion of the reflector structure forms an interface with the one or more input waveguides. The portion of the reflector structure has a smaller refractive index than the one or more input waveguides. An electrical circuit is electrically coupled to the optical circuit. The electrical circuit generates and sends different electrical signals to the reflector structure. In response to the reflector structure receiving the different electrical signals, a carrier concentration level at or near the interface or a temperature at or near the interface changes, such that incident radiation received from the one or more input waveguides is tunably reflected by the reflector structure into a targeted output waveguide of the plurality of output waveguides.
    Type: Application
    Filed: March 17, 2025
    Publication date: July 3, 2025
    Inventors: Yu-Hao Chen, Hui Yu Lee, Jui-Feng Kuan, Chien-Te Wu
  • Publication number: 20250130379
    Abstract: Disclosed are apparatus and methods for a silicon photonic (SiPh) structure comprising the integration of an electrical integrated circuit (EIC); a photonic integrated circuit (PIC) disposed on top of the EIC; two or more polymer waveguides (PWGs) disposed on top of the PIC and formed by layers of cladding polymer and core polymer; and an integration fan-out redistribution (InFO RDL) layer disposed on top of the two or more PWGs. The operation of PWGs is based on the refractive indexes of the cladding and core polymers. Inter-layer optical signals coupling is provided by edge-coupling, reflective prisms and grating coupling. A wafer-level system implements a SiPh structure die and provides inter-die signal optical interconnections among the PWGs.
    Type: Application
    Filed: November 26, 2024
    Publication date: April 24, 2025
    Inventors: Yu-Hao CHEN, Hui-Yu LEE, Chung-Ming WENG, Jui-Feng KUAN, Chien-Te WU
  • Patent number: 12271029
    Abstract: An optical circuit includes one or more input waveguides, a plurality of output waveguides, and a reflector structure. At least a portion of the reflector structure forms an interface with the one or more input waveguides. The portion of the reflector structure has a smaller refractive index than the one or more input waveguides. An electrical circuit is electrically coupled to the optical circuit. The electrical circuit generates and sends different electrical signals to the reflector structure. In response to the reflector structure receiving the different electrical signals, a carrier concentration level at or near the interface or a temperature at or near the interface changes, such that incident radiation received from the one or more input waveguides is tunably reflected by the reflector structure into a targeted output waveguide of the plurality of output waveguides.
    Type: Grant
    Filed: May 24, 2024
    Date of Patent: April 8, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Hao Chen, Hui Yu Lee, Jui-Feng Kuan, Chien-Te Wu
  • Publication number: 20250093765
    Abstract: A method for making a IC is provided, including: identifying, in a schematic, first and second edge elements, which edge elements including devices whose layout patterns are configured to conform to a first layout grid; identifying all the elements between the first and second edge elements, at least one of the identified elements including a device whose layout pattern is configured to conform to a second layout grid that is finer than the first layout grid; and calculating a spatial quantity of a combined layout pattern of the identified elements between the first and second edge elements to determine whether the combined layout pattern conforms to the first layout grid.
    Type: Application
    Filed: December 5, 2024
    Publication date: March 20, 2025
    Inventors: YU-HAO CHEN, HUI-YU LEE, JUI-FENG KUAN, CHIEN-TE WU
  • Patent number: 12197123
    Abstract: A method for making a IC is provided, including: identifying, in a schematic, first and second edge elements, which edge elements including devices whose layout patterns are configured to conform to a first layout grid; identifying all the elements between the first and second edge elements, at least one of the identified elements including a device whose layout pattern is configured to conform to a second layout grid that is finer than the first layout grid; and calculating a spatial quantity of a combined layout pattern of the identified elements between the first and second edge elements to determine whether the combined layout pattern conforms to the first layout grid.
    Type: Grant
    Filed: October 20, 2023
    Date of Patent: January 14, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Hao Chen, Hui-Yu Lee, Jui-Feng Kuan, Chien-Te Wu
  • Patent number: 12181722
    Abstract: Disclosed are apparatus and methods for a silicon photonic (SiPh) structure comprising the integration of an electrical integrated circuit (EIC); a photonic integrated circuit (PIC) disposed on top of the EIC; two or more polymer waveguides (PWGs) disposed on top of the PIC and formed by layers of cladding polymer and core polymer; and an integration fan-out redistribution (InFO RDL) layer disposed on top of the two or more PWGs. The operation of PWGs is based on the refractive indexes of the cladding and core polymers. Inter-layer optical signals coupling is provided by edge-coupling, reflective prisms and grating coupling. A wafer-level system implements a SiPh structure die and provides inter-die signal optical interconnections among the PWGs.
    Type: Grant
    Filed: August 9, 2023
    Date of Patent: December 31, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Hao Chen, Hui-Yu Lee, Chung-Ming Weng, Jui-Feng Kuan, Chien-Te Wu
  • Publication number: 20240345425
    Abstract: A method includes forming, over a substrate, an optical component and first, second and third thermal control mechanisms. The optical component includes first and second main paths, and first and second side paths each having opposite ends correspondingly coupled to the first and second main paths. The second side path is spaced from the first side path. Each of the first, second and third thermal control mechanisms includes a first thermoelectric member having a first conductivity type, a second thermoelectric member having a second conductivity type opposite to the first conductivity type, and a conductive structure that electrically connects the first thermoelectric member to the second thermoelectric member. The first side path is between the first and third thermal control mechanisms. The second side path is between the second and third thermal control mechanisms. The third thermal control mechanism is between the first and second side paths.
    Type: Application
    Filed: June 27, 2024
    Publication date: October 17, 2024
    Inventors: Yu-Hao CHEN, Hui Yu LEE, Jui-Feng KUAN, Chien-Te WU
  • Publication number: 20240310576
    Abstract: An optical circuit includes one or more input waveguides, a plurality of output waveguides, and a reflector structure. At least a portion of the reflector structure forms an interface with the one or more input waveguides. The portion of the reflector structure has a smaller refractive index than the one or more input waveguides. An electrical circuit is electrically coupled to the optical circuit. The electrical circuit generates and sends different electrical signals to the reflector structure. In response to the reflector structure receiving the different electrical signals, a carrier concentration level at or near the interface or a temperature at or near the interface changes, such that incident radiation received from the one or more input waveguides is tunably reflected by the reflector structure into a targeted output waveguide of the plurality of output waveguides.
    Type: Application
    Filed: May 24, 2024
    Publication date: September 19, 2024
    Inventors: Yu-Hao Chen, Hui Yu Lee, Jui-Feng Kuan, Chien-Te Wu
  • Patent number: 12055800
    Abstract: A semiconductor structure includes, an optical component and a thermal control mechanism. The optical component includes a first main path that splits into a first side path and a second side path so that the first side path and the second side path are separated from one another. The thermal control mechanism configured to control a temperature of both the first side path and the second side path, wherein the first thermal control mechanism includes a first thermoelectric member and a second thermoelectric member that are positioned between the first side path and the second side path and the first thermoelectric member and the second thermoelectric member have opposite conductive types.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: August 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Hao Chen, Hui Yu Lee, Jui-Feng Kuan, Chien-Te Wu
  • Patent number: 11994713
    Abstract: An optical circuit includes one or more input waveguides, a plurality of output waveguides, and a reflector structure. At least a portion of the reflector structure forms an interface with the one or more input waveguides. The portion of the reflector structure has a smaller refractive index than the one or more input waveguides. An electrical circuit is electrically coupled to the optical circuit. The electrical circuit generates and sends different electrical signals to the reflector structure. In response to the reflector structure receiving the different electrical signals, a carrier concentration level at or near the interface or a temperature at or near the interface changes, such that incident radiation received from the one or more input waveguides is tunably reflected by the reflector structure into a targeted output waveguide of the plurality of output waveguides.
    Type: Grant
    Filed: March 20, 2023
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Hao Chen, Hui Yu Lee, Jui-Feng Kuan, Chien-Te Wu
  • Publication number: 20240128955
    Abstract: An integrated circuit includes a semiconductor substrate and a plurality of circuit elements in or on the substrate. The circuit elements are defined by standard layout cells selected from a cell library. The circuit elements including a plurality of flip-flops. Each flip-flop has a data input terminal, a data output terminal, a clock input terminal, and a clock output terminal. A first one of the flip-flops directly abuts a second flip-flop such that the clock output terminal of the first flip-flop electrically connects with the clock input terminal of the second flip-flop.
    Type: Application
    Filed: April 24, 2023
    Publication date: April 18, 2024
    Inventors: Shao-Yu Steve Wang, Chien-Te Wu, Shang-Chih Hsieh, Nick Tsai
  • Publication number: 20240125776
    Abstract: Provided herein are encoded microcarriers for analyte detection in multiplex assays. The microcarriers are encoded with an analog code for identification and comprise a capture agent for analyte detection and a substantially transparent magnetic polymer. The analog code is generated by a two-dimensional shape of a substantially non-transparent layer. Also provided are methods of making the encoded microcarriers disclosed herein. Further provided are methods and kits for conducting a multiplex assay using the microcarriers described herein.
    Type: Application
    Filed: November 21, 2023
    Publication date: April 18, 2024
    Applicant: Plexbio Co., Ltd.
    Inventors: Dean TSAO, Chin-Shiou HUANG, Cheng-Tse LIN, Chien-Te WU, FengKan LU
  • Publication number: 20240045322
    Abstract: A method for making a IC is provided, including: identifying, in a schematic, first and second edge elements, which edge elements including devices whose layout patterns are configured to conform to a first layout grid; identifying all the elements between the first and second edge elements, at least one of the identified elements including a device whose layout pattern is configured to conform to a second layout grid that is finer than the first layout grid; and calculating a spatial quantity of a combined layout pattern of the identified elements between the first and second edge elements to determine whether the combined layout pattern conforms to the first layout grid.
    Type: Application
    Filed: October 20, 2023
    Publication date: February 8, 2024
    Inventors: YU-HAO CHEN, HUI-YU LEE, JUI-FENG KUAN, CHIEN-TE WU
  • Patent number: 11852967
    Abstract: A method for making a IC is provided, including: identifying, in a schematic, first and second edge elements, which edge elements including devices whose layout patterns are configured to conform to a first layout grid; identifying all the elements between the first and second edge elements, at least one of the identified elements including a device whose layout pattern is configured to conform to a second layout grid that is finer than the first layout grid; and calculating a spatial quantity of a combined layout pattern of the identified elements between the first and second edge elements to determine whether the combined layout pattern conforms to the first layout grid.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Hao Chen, Hui-Yu Lee, Jui-Feng Kuan, Chien-Te Wu
  • Publication number: 20230384537
    Abstract: A method of making a semiconductor device includes defining an opening extending from a first side of a substrate to a second side of the substrate, wherein the first side of the substrate is opposite the second side of the substrate. The method further includes depositing a dielectric material into the opening, wherein the dielectric material has a first refractive index. The method further includes etching the dielectric material to define a core opening extending from the first side of the substrate to the second side of the substrate. The method further includes depositing a core material into the core opening, wherein the core material has a second refractive index different from the first refractive index, and the core material is optically transparent. The method further includes removing excess core material from a surface of the substrate.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 30, 2023
    Inventors: Yu-Hao CHEN, Chung-Ming WENG, Tsung-Yuan YU, Hui Yu LEE, Hung-Yi KUO, Jui-Feng KUAN, Chien-Te WU
  • Publication number: 20230384538
    Abstract: Disclosed are apparatus and methods for a silicon photonic (SiPh) structure comprising the integration of an electrical integrated circuit (EIC); a photonic integrated circuit (PIC) disposed on top of the EIC; two or more polymer waveguides (PWGs) disposed on top of the PIC and formed by layers of cladding polymer and core polymer; and an integration fan-out redistribution (InFO RDL) layer disposed on top of the two or more PWGs. The operation of PWGs is based on the refractive indexes of the cladding and core polymers. Inter-layer optical signals coupling is provided by edge-coupling, reflective prisms and grating coupling. A wafer-level system implements a SiPh structure die and provides inter-die signal optical interconnections among the PWGs.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Yu-Hao CHEN, Hui-Yu Lee, Chung-Ming Weng, Jui-Feng Kuan, Chien-Te Wu
  • Patent number: 11754794
    Abstract: A semiconductor device includes a substrate. The semiconductor device further includes a waveguide on a first side of the substrate. The semiconductor device further includes a photodetector (PD) on a second side of the substrate, opposite the first side of the substrate. The semiconductor device further includes an optical through via (OTV) optically connecting the PD with the waveguide, wherein the OTV extends through the substrate from the first side of the substrate to the second side of the substrate.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Hao Chen, Chung-Ming Weng, Tsung-Yuan Yu, Hui Yu Lee, Hung-Yi Kuo, Jui-Feng Kuan, Chien-Te Wu
  • Patent number: 11740415
    Abstract: Disclosed are apparatus and methods for a silicon photonic (SiPh) structure comprising the integration of an electrical integrated circuit (EIC); a photonic integrated circuit (PIC) disposed on top of the EIC; two or more polymer waveguides (PWGs) disposed on top of the PIC and formed by layers of cladding polymer and core polymer; and an integration fan-out redistribution (InFO RDL) layer disposed on top of the two or more PWGs. The operation of PWGs is based on the refractive indexes of the cladding and core polymers. Inter-layer optical signals coupling is provided by edge-coupling, reflective prisms and grating coupling. A wafer-level system implements a SiPh structure die and provides inter-die signal optical interconnections among the PWGs.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: August 29, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Hao Chen, Hui-Yu Lee, Chung-Ming Weng, Jui-Feng Kuan, Chien-Te Wu
  • Publication number: 20230228939
    Abstract: An optical circuit includes one or more input waveguides, a plurality of output waveguides, and a reflector structure. At least a portion of the reflector structure forms an interface with the one or more input waveguides. The portion of the reflector structure has a smaller refractive index than the one or more input waveguides. An electrical circuit is electrically coupled to the optical circuit. The electrical circuit generates and sends different electrical signals to the reflector structure. In response to the reflector structure receiving the different electrical signals, a carrier concentration level at or near the interface or a temperature at or near the interface changes, such that incident radiation received from the one or more input waveguides is tunably reflected by the reflector structure into a targeted output waveguide of the plurality of output waveguides.
    Type: Application
    Filed: March 20, 2023
    Publication date: July 20, 2023
    Inventors: Yu-Hao Chen, Hui Yu Lee, Jui-Feng Kuan, Chien-Te Wu