Patents by Inventor Chien-Wen Hsiao

Chien-Wen Hsiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11948999
    Abstract: A device includes a first semiconductor fin, a second semiconductor fin, a source/drain epitaxial structure, a semiconductive cap, and a contact. The first semiconductor fin and the second semiconductor fin are over a substrate. The source/drain epitaxial structure is connected to the first semiconductor fin and the second semiconductor fin. The source/drain epitaxial structure includes a first protruding portion and a second protruding portion aligned with the first semiconductor fin and the second semiconductor fin, respectively. The semiconductive cap is on and in contact with the first protruding portion and the second protruding portion. A top surface of the semiconductive cap is lower than a top surface of the first protruding portion of the source/drain epitaxial structure. The contact is electrically connected to the source/drain epitaxial structure and covers the semiconductive cap.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Ru Lee, Chii-Horng Li, Chien-I Kuo, Heng-Wen Ting, Jung-Chi Tai, Lilly Su, Yang-Tai Hsiao
  • Publication number: 20240087896
    Abstract: Methods of forming line-end extensions and devices having line-end extensions are provided. In some embodiments, a method includes forming a patterned photoresist on a first region of a hard mask layer. A line-end extension region is formed in the hard mask layer. The line-end extension region extends laterally outward from an end of the first region of the hard mask layer. The line-end extension region may be formed by changing a physical property of the hard mask layer at the line-end extension region.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Chih-Min HSIAO, Chien-Wen LAI, Ru-Gun LIU, Chih-Ming LAI, Shih-Ming CHANG, Yung-Sung YEN, Yu-Chen CHANG
  • Patent number: 11090696
    Abstract: A method includes introducing ozone toward a photoresist layer over a substrate. The ozone is decomposed into dioxygen and first atomic oxygen. The dioxygen is decomposed into second atomic oxygen. The first atomic oxygen and the second atomic oxygen are reacted with the photoresist layer. An apparatus that performs the method is also disclosed.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: August 17, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jui-Chuan Chang, Shao-Yen Ku, Wen-Chang Tsai, Shang-Yuan Yu, Chien-Wen Hsiao, Fan-Yi Hsu
  • Publication number: 20200094298
    Abstract: A method includes introducing ozone toward a photoresist layer over a substrate. The ozone is decomposed into dioxygen and first atomic oxygen. The dioxygen is decomposed into second atomic oxygen. The first atomic oxygen and the second atomic oxygen are reacted with the photoresist layer. An apparatus that performs the method is also disclosed.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 26, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jui-Chuan CHANG, Shao-Yen KU, Wen-Chang TSAI, Shang-Yuan YU, Chien-Wen HSIAO, Fan-Yi HSU
  • Patent number: 10510527
    Abstract: Some embodiments relate to methods and apparatus for mitigating high metal concentrations in photoresist residue and recycling sulfuric acid (H2SO4) in single wafer cleaning tools. In some embodiments, a disclosed single wafer cleaning tool has a processing chamber that houses a semiconductor substrate. A high oxidative treatment unit may apply a high oxidative chemical pre-treatment to the semiconductor substrate to remove a photoresist residue having metal impurities from the semiconductor substrate in a manner that results in a contaminant remainder. A SPM cleaning unit apply a sulfuric-peroxide mixture (SPM) cleaning solution to the semiconductor substrate to remove the contaminant remainder from the semiconductor substrate as an SPM effluent. The SPM effluent is provided to a recycling unit configured to recover sulfuric acid (H2SO4) from the SPM effluent and to provide the recovered H2SO4 to the SPM cleaning unit via a feedback conduit.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Wen Hsiao, Shao-Yen Ku, Tzu-Yang Chung, Shang-Yuan Yu, Wagner Chang
  • Patent number: 10486204
    Abstract: A semiconductor apparatus for removing a photoresist layer on a substrate includes a platform, a first ultraviolet lamp, and an ozone supplier. The platform is used to support the substrate. The first ultraviolet lamp is used to provide first ultraviolet light. The ozone supplier has at least one first nozzle for introducing ozone toward the substrate through the first ultraviolet light, such that at least a part of the ozone is decomposed by the first ultraviolet light, and at least a part of the decomposed ozone reaches the photoresist layer to react with the photoresist layer. Moreover, a method of removing a photoresist layer on a substrate is also provided.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: November 26, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jui-Chuan Chang, Shao-Yen Ku, Wen-Chang Tsai, Shang-Yuan Yu, Chien-Wen Hsiao, Fan-Yi Hsu
  • Patent number: 9349617
    Abstract: Embodiments that relate to mechanisms for cleaning wafers is provided. A method for wafer cleaning includes cleaning wafers by a wet-bench cleaning operation. The method also includes thereafter cleaning each of the wafers by a single-wafer cleaning operation. In addition, a cleaning apparatus for enhancing the performance of the above method is also provided.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: May 24, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shang-Yuan Yu, Shao-Yen Ku, Chien-Wen Hsiao, Hong-Jie Xu, Jui-Chuan Chang, Wen-Chang Tsai
  • Publication number: 20160129484
    Abstract: A semiconductor apparatus for removing a photoresist layer on a substrate includes a platform, a first ultraviolet lamp, and an ozone supplier. The platform is used to support the substrate. The first ultraviolet lamp is used to provide first ultraviolet light. The ozone supplier has at least one first nozzle for introducing ozone toward the substrate through the first ultraviolet light, such that at least a part of the ozone is decomposed by the first ultraviolet light, and at least a part of the decomposed ozone reaches the photoresist layer to react with the photoresist layer. Moreover, a method of removing a photoresist layer on a substrate is also provided.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 12, 2016
    Inventors: Jui-Chuan CHANG, Shao-Yen KU, Wen-Chang TSAI, Shang-Yuan YU, Chien-Wen HSIAO, Fan-Yi HSU
  • Publication number: 20150144159
    Abstract: Embodiments that relate to mechanisms for cleaning wafers is provided. A method for wafer cleaning includes cleaning wafers by a wet-bench cleaning operation. The method also includes thereafter cleaning each of the wafers by a single-wafer cleaning operation. In addition, a cleaning apparatus for enhancing the performance of the above method is also provided.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shang-Yuan YU, Shao-Yen KU, Chien-Wen HSIAO, Hong-Jie XU, Jui-Chuan CHANG, Wen-Chang TSAI
  • Publication number: 20140216500
    Abstract: Some embodiments relate to methods and apparatus for mitigating high metal concentrations in photoresist residue and recycling sulfuric acid (H2SO4) in single wafer cleaning tools. In some embodiments, a disclosed single wafer cleaning tool has a processing chamber that houses a semiconductor substrate. A high oxidative treatment unit may apply a high oxidative chemical pre-treatment to the semiconductor substrate to remove a photoresist residue having metal impurities from the semiconductor substrate in a manner that results in a contaminant remainder. A SPM cleaning unit apply a sulfuric-peroxide mixture (SPM) cleaning solution to the semiconductor substrate to remove the contaminant remainder from the semiconductor substrate as an SPM effluent. The SPM effluent is provided to a recycling unit configured to recover sulfuric acid (H2SO4) from the SPM effluent and to provide the recovered H2SO4to the SPM cleaning unit via a feedback conduit.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 7, 2014
    Applicant: Taiwan Semicunductor Manufacturing Co., Ltd.
    Inventors: Chien-Wen Hsiao, Shao-Yen Ku, Tzu-Yang Chung, Shang-Yuan Yu, Wagner Chang