Patents by Inventor Chien-Yi Lin

Chien-Yi Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11985427
    Abstract: A display device includes a display module and a camera module. The camera module includes a first housing, a second housing and a camera unit. The first housing is movably disposed on the display module. The second housing is separably connected to the first housing. The camera unit is disposed on the second housing. The second housing is able to move with the first housing in relative to the display module, such that the camera unit is exposed from the display module or hidden in the display module. When the second housing is separated from the first housing, the second housing is able to rotate in relative to the first housing, so as to adjust an orientation of the camera unit.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: May 14, 2024
    Assignees: Inventec (Pudong) Technology Corp., Inventec Corporation
    Inventors: Chien-Chang Chen, Chin-Yi Lin, Chia-Chen Chen, Chi-Zen Peng
  • Publication number: 20240144467
    Abstract: A hot spot defect detecting method and a hot spot defect detecting system are provided. In the method, hot spots are extracted from a design of a semiconductor product to define a hot spot map comprising hot spot groups, wherein local patterns in a same context of the design yielding a same image content are defined as a same hot spot group. During runtime, defect images obtained by an inspection tool performing hot scans on a wafer manufactured with the design are acquired and the hot spot map is aligned to each defect image to locate the hot spot groups. The hot spot defects in each defect image are detected by dynamically mapping the hot spot groups located in each defect image to a plurality of threshold regions and respectively performing automatic thresholding on pixel values of the hot spots of each hot spot group in the corresponding threshold region.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 2, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Huei Chen, Pei-Chao Su, Xiaomeng Chen, Chan-Ming Chang, Shih-Yung Chen, Hung-Yi Chung, Kuang-Shing Chen, Li-Jou Lee, Yung-Cheng Lin, Wei-Chen Wu, Shih-Chang Wang, Chien-An Lin
  • Patent number: 11966077
    Abstract: A light emission apparatus includes a laser diode configured to emit a light; a laser driver electrically coupled to the laser diode, the laser driver being configured to drive the laser diode to generate the light; and an optical module arranged to receive the light emitted by the laser diode, the optical module comprising at least one optical element and being configured to adjust the light and emits a transmitting light; wherein the transmitting light emits from the optical module with an illumination angle and the optical module adjusts the light to vary the illumination angle.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: April 23, 2024
    Assignee: Artilux, Inc.
    Inventors: Yun-Chung Na, Chien-Lung Chen, Chieh-Ting Lin, Yu-Yi Hsu, Hui-Wen Chen, Bo-Jiun Chen, Shih-Tai Chuang
  • Patent number: 11961770
    Abstract: Some embodiments of the present disclosure relate to a processing tool. The tool includes a housing enclosing a processing chamber, and an input/output port configured to pass a wafer through the housing into and out of the processing chamber. A back-side macro-inspection system is arranged within the processing chamber and is configured to image a back side of the wafer. A front-side macro-inspection system is arranged within the processing chamber and is configured to image a front side of the wafer according to a first image resolution. A front-side micro-inspection system is arranged within the processing chamber and is configured to image the front side of the wafer according to a second image resolution which is higher than the first image resolution.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Han Lin, Chien-Fa Lee, Hsu-Shui Liu, Jiun-Rong Pai, Sheng-Hsiang Chuang, Surendra Kumar Soni, Shou-Wen Kuo, Wu-An Weng, Gary Tsai, Chien-Ko Liao, Ya Hsun Hsueh, Becky Liao, Ethan Yu, Ming-Chi Tsai, Kuo-Yi Liu
  • Publication number: 20240118316
    Abstract: A probe card and a manufacturing method of a probe card are provided. The probe card includes a probe head, first and second substrates, an insulating component, and an adhesive member. The second substrate is disposed between the probe head and the first substrate, and is disposed on the first substrate. The second substrate faces the first substrate and includes second contacts. The second contacts are electrically connected to first contacts of the first substrate. The insulating component is disposed between the first substrate and the second substrate, and disposed at an outer side of the second contacts. The adhesive member is disposed on the first substrate, arranged on at least a part of the side surface of the second substrate, and disposed at an outer side of the insulating component.
    Type: Application
    Filed: December 19, 2023
    Publication date: April 11, 2024
    Applicant: MPI Corporation
    Inventors: Chin-Yi Lin, Che-Wei Lin, Ting-Ju Wu, Chien-Kai Hung
  • Publication number: 20240100553
    Abstract: A sprayer, comprising: a container, configured to contain liquid; a passage, comprising a first opening, a second opening, a resonator and a mesh, when the liquid is passed through the resonator, the liquid is emitted as a gas; a first optical sensor, configured to sense first optical data of at least portion of the mesh or at least portion of a surface of the container; and a processing circuit, configured to compute a foaming level of the mesh or of the surface according to the first optical data, and configured to determine whether the resonator should be turned off or not according to the foaming level. In another aspect, the processing circuit estimates a liquid level of the liquid but does not correspondingly turn off the resonator. By this way, the resonator may be turned on or turned off more properly and the liquid level may be more precisely estimated.
    Type: Application
    Filed: December 5, 2023
    Publication date: March 28, 2024
    Applicant: PixArt Imaging Inc.
    Inventors: Shih-Jen Lu, Yang-Ming Chou, Chih-Hao Wang, Chien-Yi Kao, Hsin-Yi Lin
  • Patent number: 11944017
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes an insulation layer. A bottom electrode via is disposed in the insulation layer. The bottom electrode via includes a conductive portion and a capping layer over the conductive portion. A barrier layer surrounds the bottom electrode via. A magnetic tunneling junction (MTJ) is disposed over the bottom electrode via.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tai-Yen Peng, Yu-Shu Chen, Chien Chung Huang, Sin-Yi Yang, Chen-Jung Wang, Han-Ting Lin, Jyu-Horng Shieh, Qiang Fu
  • Publication number: 20240099150
    Abstract: A method includes forming Magnetic Tunnel Junction (MTJ) stack layers, which includes depositing a bottom electrode layer; depositing a bottom magnetic electrode layer over the bottom electrode layer; depositing a tunnel barrier layer over the bottom magnetic electrode layer; depositing a top magnetic electrode layer over the tunnel barrier layer; and depositing a top electrode layer over the top magnetic electrode layer. The method further includes patterning the MTJ stack layers to form a MTJ; and performing a passivation process on a sidewall of the MTJ to form a protection layer. The passivation process includes reacting sidewall surface portions of the MTJ with a process gas comprising elements selected from the group consisting of oxygen, nitrogen, carbon, and combinations thereof.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Tai-Yen Peng, Yu-Shu Chen, Sin-Yi Yang, Chen-Jung Wang, Chien Chung Huang, Han-Ting Lin, Jyu-Horng Shieh, Qiang Fu
  • Publication number: 20240071854
    Abstract: Some implementations described herein a provide a multi-die package and methods of formation. The multi-die package includes a dynamic random access memory integrated circuit die over a system-on-chip integrated circuit die, and a heat transfer component between the system-on-chip integrated circuit die and the dynamic random access memory integrated circuit die. The heat transfer component, which may correspond to a dome-shaped structure, may be on a surface of the system-on-chip integrated circuit die and enveloped by an underfill material between the system-on-chip integrated circuit die and the dynamic random access memory integrated circuit die. The heat transfer component, in combination with the underfill material, may be a portion of a thermal circuit having one or more thermal conductivity properties to quickly spread and transfer heat within the multi-die package so that a temperature of the system-on-chip integrated circuit die satisfies a threshold.
    Type: Application
    Filed: August 31, 2022
    Publication date: February 29, 2024
    Inventors: Wen-Yi LIN, Kuang-Chun LEE, Chien-Chen LI, Chien-Li KUO, Kuo-Chio LIU
  • Publication number: 20240071950
    Abstract: Integrated circuit packages and methods of forming the same are discussed. In an embodiment, a device includes: a package substrate; a semiconductor device attached to the package substrate; an underfill between the semiconductor device and the package substrate; and a package stiffener attached to the package substrate, the package stiffener includes: a main body extending around the semiconductor device and the underfill in a top-down view, the main body having a first coefficient of thermal expansion; and pillars in the main body, each of the pillars extending from a top surface of the main body to a bottom surface of the main body, each of the pillars physically contacting the main body, the pillars having a second coefficient of thermal expansion, the second coefficient of thermal expansion being less than the first coefficient of thermal expansion.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Inventors: Wen-Yi Lin, Kuang-Chun Lee, Chien-Chen Li, Chien-Li Kuo, Kuo-Chio Liu
  • Publication number: 20180036447
    Abstract: A fragrance releasing article, comprising a rear panel and a front panel, the rear panel having an opening, a decorative element receiving part and a fragrance releasing element receiving part provided in the opening for receiving a fragrance releasing element and a decorative element, respectively; the front panel removably covering and attached to the opening of the rear panel, the front panel comprising a decorative element covering part and a fragrance releasing element covering part for covering the fragrance releasing element receiving part and the decorative element receiving part, respectively, the fragrance releasing element covering part having at least one opening for releasing the fragrance of the fragrance releasing element, and the decorative element covering part having a display window for displaying the decorative element.
    Type: Application
    Filed: January 25, 2017
    Publication date: February 8, 2018
    Inventor: Chien-Yi Lin
  • Publication number: 20160023702
    Abstract: An adjusting device for a saddle, which is adapted to be mounted between two saddle rails and a seat post, includes a bracket having a barrel portion and an extending portion. The barrel portion has an axial hole and the extending portion has a cavity communicating with the axial hole. An inner tube is received in the barrel portion and cooperates with two caps to clamp the two saddle rails. An engaging block is received in the cavity of the extending portion and a controlling member for securing the engaging block, wherein the engaging block is configured to engage with the inner tube. The controlling member is rotated in a tight state where the engaging block is engaged with the inner tube, and in a loose state where the engaging block is disengaged from the inner tube so that an inclined angle of the saddle is allowed to be adjusted.
    Type: Application
    Filed: July 25, 2014
    Publication date: January 28, 2016
    Inventor: Chien-Yi Lin
  • Patent number: 8780068
    Abstract: A pulse is applied through a capacitive touch key sensor to a sampling capacitor of an analog-to-digital converter (ADC). The voltage charge arriving at the sampling capacitor will be maximum when there is substantially no shunt capacitance between the capacitive touch key sensor and the sampling capacitor. However, a object such as an operator's finger when in close proximity to the capacitive touch key sensor will create a shunt to ground capacitance that diverts some of the charge that is supposed to go to the sampling capacitor and thereby reducing the voltage charge on the sampling capacitor. This change in charge voltage when the capacitive touch key sensor is activated (touched) may be easily detected with the ADC. In addition, light emitting diode (LED) displays may be integrated with the capacitive touch key sensors and use the same connections on an integrated circuit device in a time division multiplexed manor.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: July 15, 2014
    Assignee: Microchip Technology Incorporated
    Inventor: Chien-Yi Lin
  • Publication number: 20130229385
    Abstract: A pulse is applied through a capacitive touch key sensor to a sampling capacitor of an analog-to-digital converter (ADC). The voltage charge arriving at the sampling capacitor will be maximum when there is substantially no shunt capacitance between the capacitive touch key sensor and the sampling capacitor. However, a object such as an operator's finger when in close proximity to the capacitive touch key sensor will create a shunt to ground capacitance that diverts some of the charge that is supposed to go to the sampling capacitor and thereby reducing the voltage charge on the sampling capacitor. This change in charge voltage when the capacitive touch key sensor is activated (touched) may be easily detected with the ADC. In addition, light emitting diode (LED) displays may be integrated with the capacitive touch key sensors and use the same connections on an integrated circuit device in a time division multiplexed manor.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 5, 2013
    Applicant: Microchip Technology Incorporated
    Inventor: Chien-Yi Lin
  • Patent number: 8427450
    Abstract: A pulse is applied through a capacitive touch key sensor to a sampling capacitor of an analog-to-digital converter (ADC). The voltage charge arriving at the sampling capacitor will be maximum when there is substantially no shunt capacitance between the capacitive touch key sensor and the sampling capacitor. However, a object such as an operator's finger when in close proximity to the capacitive touch key sensor will create a shunt to ground capacitance that diverts some of the charge that is supposed to go to the sampling capacitor and thereby reducing the voltage charge on the sampling capacitor. This change in charge voltage when the capacitive touch key sensor is activated (touched) may be easily detected with the ADC. In addition, light emitting diode (LED) displays may be integrated with the capacitive touch key sensors and use the same connections on an integrated circuit device in a time division multiplexed manor.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 23, 2013
    Assignee: Microchip Technology Incorporated
    Inventor: Chien-Yi Lin
  • Patent number: 8310381
    Abstract: A pulse is applied through a capacitive touch key sensor to a sampling capacitor of an analog-to-digital converter (ADC). The voltage charge arriving at the sampling capacitor will be maximum when there is substantially no shunt capacitance between the capacitive touch key sensor and the sampling capacitor. However, a object such as an operator's finger when in close proximity to the capacitive touch key sensor will create a capacitive shunt to ground that diverts some of the charge that is supposed to go to the sampling capacitor and thereby reduces the voltage charge on the sampling capacitor. This change in charge voltage when the capacitive touch key sensor is activated (touched) may be easily detected with the ADC. In addition, light emitting diodes (LEDs) may be integrated with the capacitive touch key sensors and use the same connections on an integrated circuit device in a time division multiplexed manor.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: November 13, 2012
    Assignee: Microchip Technology Incorporated
    Inventor: Chien-Yi Lin
  • Publication number: 20110074609
    Abstract: A pulse is applied through a capacitive touch key sensor to a sampling capacitor of an analog-to-digital converter (ADC). The voltage charge arriving at the sampling capacitor will be maximum when there is substantially no shunt capacitance between the capacitive touch key sensor and the sampling capacitor. However, a object such as an operator's finger when in close proximity to the capacitive touch key sensor will create a capacitive shunt to ground that diverts some of the charge that is supposed to go to the sampling capacitor and thereby reduces the voltage charge on the sampling capacitor. This change in charge voltage when the capacitive touch key sensor is activated (touched) may be easily detected with the ADC. In addition, light emitting diodes (LEDs) may be integrated with the capacitive touch key sensors and use the same connections on an integrated circuit device in a time division multiplexed manor.
    Type: Application
    Filed: June 4, 2010
    Publication date: March 31, 2011
    Inventor: Chien-Yi Lin
  • Publication number: 20100177058
    Abstract: A pulse is applied through a capacitive touch key sensor to a sampling capacitor of an analog-to-digital converter (ADC). The voltage charge arriving at the sampling capacitor will be maximum when there is substantially no shunt capacitance between the capacitive touch key sensor and the sampling capacitor. However, a object such as an operator's finger when in close proximity to the capacitive touch key sensor will create a shunt to ground capacitance that diverts some of the charge that is supposed to go to the sampling capacitor and thereby reducing the voltage charge on the sampling capacitor. This change in charge voltage when the capacitive touch key sensor is activated (touched) may be easily detected with the ADC. In addition, light emitting diode (LED) displays may be integrated with the capacitive touch key sensors and use the same connections on an integrated circuit device in a time division multiplexed manor.
    Type: Application
    Filed: December 18, 2009
    Publication date: July 15, 2010
    Inventor: Chien-Yi Lin