Patents by Inventor Chien-Yu LI

Chien-Yu LI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951624
    Abstract: A robotic arm system includes first robotic arm, second robotic arm and main controller. The first robotic arm and the second robotic arm are configured to grab object. The main controller is configured to: determine whether first force vector of first force applied by the first robotic arm to the object is equal to second force vector of second force applied by the second robotic arm to the object; when the first force vector and the second force vector are not equal, obtain a first difference between the first force vector and the second force vector; and according to the first difference, change at least one of the first force applied by the first robotic arm to the object and the second force applied by the second robotic arm to the object so that the first force vector and the second force vector are equal.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: April 9, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chien-Yu Wu, Shang-Kun Li, Shu Huang
  • Publication number: 20240111849
    Abstract: A media docking device includes an input circuit, an output circuit and a processing circuit. The input circuit is electrically connected to a media source device for receiving media data. The output circuit is electrically connected to a media play device. The processing circuit is electrically connected to the input circuit and the output circuit. The processing circuit determines if a verification procedure is passed. If the verification procedure is passed, the processing circuit transfers the media data to the media play device. If the verification procedure is not passed, the processing circuit limits a transmission of the media data, such that the media data will not be completely played by the media play device.
    Type: Application
    Filed: October 4, 2023
    Publication date: April 4, 2024
    Inventors: Chien-Wei CHEN, Tsung-Han LI, You-Wen CHIOU, Kuan-Chi CHOU, Bo Yu LAI
  • Publication number: 20240114207
    Abstract: A media docking device includes an input module, an output module and a processing module. The input module is electrically connected to a media source device for receiving media data. The output module is electrically connected to a media play device. The processing module determines if an instruction is received from the media source device or a remote device. If the instruction is not received, the processing module transfers the media data to the output module to transmit to the media play device. If the instruction is received, the processing module limits a transmission of the media data according to the instruction, such that the media data will not be completely played by the media play device.
    Type: Application
    Filed: October 4, 2023
    Publication date: April 4, 2024
    Inventors: Chien-Wei CHEN, Tsung-Han LI, You-Wen CHIOU, Kuan-Chi CHOU, Bo Yu LAI
  • Patent number: 11152323
    Abstract: Package structures and methods of forming package structures are discussed. A package structure, in accordance with some embodiments, includes an integrated circuit die, an encapsulant at least laterally encapsulating the integrated circuit die, a redistribution structure on the integrated circuit die and the encapsulant, a connector support metallization coupled to the redistribution structure, and an external connector on the connector support metallization. The redistribution structure includes a dielectric layer disposed distally from the encapsulant and the integrated circuit die. The connector support metallization has a first portion on a surface of the dielectric layer and has a second portion extending in an opening through the dielectric layer. The first portion of the connector support metallization has a sloped sidewall extending in a direction away from the surface of the dielectric layer.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chien-Yu Li, Hung-Jui Kuo, Li-Hsien Huang, Hsien-Wei Chen, Der-Chyang Yeh, Chung-Shi Liu, Shin-Puu Jeng
  • Publication number: 20190252341
    Abstract: Package structures and methods of forming package structures are discussed. A package structure, in accordance with some embodiments, includes an integrated circuit die, an encapsulant at least laterally encapsulating the integrated circuit die, a redistribution structure on the integrated circuit die and the encapsulant, a connector support metallization coupled to the redistribution structure, and an external connector on the connector support metallization. The redistribution structure includes a dielectric layer disposed distally from the encapsulant and the integrated circuit die. The connector support metallization has a first portion on a surface of the dielectric layer and has a second portion extending in an opening through the dielectric layer. The first portion of the connector support metallization has a sloped sidewall extending in a direction away from the surface of the dielectric layer.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Chen-Hua Yu, Chien-Yu Li, Hung-Jui Kuo, Li-Hsien Huang, Hsien-Wei Chen, Der-Chyang Yeh, Chung-Shi Liu, Shin-Puu Jeng
  • Patent number: 10269752
    Abstract: Package structures and methods of forming package structures are discussed. A package structure, in accordance with some embodiments, includes an integrated circuit die, an encapsulant at least laterally encapsulating the integrated circuit die, a redistribution structure on the integrated circuit die and the encapsulant, a connector support metallization coupled to the redistribution structure, and an external connector on the connector support metallization. The redistribution structure includes a dielectric layer disposed distally from the encapsulant and the integrated circuit die. The connector support metallization has a first portion on a surface of the dielectric layer and has a second portion extending in an opening through the dielectric layer. The first portion of the connector support metallization has a sloped sidewall extending in a direction away from the surface of the dielectric layer.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chien-Yu Li, Hung-Jui Kuo, Li-Hsien Huang, Hsien-Wei Chen, Der-Chyang Yeh, Chung-Shi Liu, Shin-Puu Jeng
  • Patent number: 9876485
    Abstract: An active circuit includes an active element, an input unit, and a bypass unit. The active element is coupled to an output terminal of the active circuit for outputting an output signal. The input unit is coupled to an input terminal of the active circuit, and is coupled to an input terminal of the active element through a node. The input unit adjusts a capacitance value of the input unit according to a first control signal. The bypass unit is coupled to an output terminal of the input unit through the node, and is coupled to the output terminal of the active circuit. The bypass unit turns on or off a signal bypassing path according to a second control signal.
    Type: Grant
    Filed: July 4, 2016
    Date of Patent: January 23, 2018
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Ching-Wen Hsu, Chien-Yu Li
  • Publication number: 20170272059
    Abstract: An active circuit includes an active element, an input unit, and a bypass unit. The active element is coupled to an output terminal of the active circuit for outputting an output signal. The input unit is coupled to an input terminal of the active circuit, and is coupled to an input terminal of the active element through a node. The input unit adjusts a capacitance value of the input unit according to a first control signal. The bypass unit is coupled to an output terminal of the input unit through the node, and is coupled to the output terminal of the active circuit. The bypass unit turns on or off a signal bypassing path according to a second control signal.
    Type: Application
    Filed: July 4, 2016
    Publication date: September 21, 2017
    Inventors: Chih-Sheng Chen, Ching-Wen Hsu, Chien-Yu Li
  • Patent number: 9473372
    Abstract: In general, techniques are described for delegating responsibility for performing a connectivity protocol from one or more endpoint devices to network infrastructure situated along a network forwarding path connecting the endpoint devices. In some examples, an intermediate network device includes a connectivity protocol module of control unit that operates a connectivity protocol session on behalf of a server, wherein the server exchanges application data with the client using an application-layer communication session with the client. The connectivity protocol module monitors connectivity for the application-layer communication session with the connectivity protocol session by exchanging connectivity protocol messages for the connectivity protocol session with the client to determine a connectivity status for the communication session.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: October 18, 2016
    Assignee: Juniper Networks, Inc.
    Inventors: Gert Grammel, Chien Yu Li, Theodore X. Qian
  • Patent number: 9383657
    Abstract: A method for lithography exposing process is provided. The method includes performing a first lithography exposing process to a resist layer using a mask having a focus-sensitive pattern and an energy-sensitive pattern; measuring critical dimensions (CDs) of transferred focus-sensitive pattern and transferred energy-sensitive pattern on the resist layer; extracting Bossung curves from the CDs; and determining slopes of the Bossung curves.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: July 5, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jhih-Yu Wang, Chien-Yu Li, Iu-Ren Chen, Chi-Cheng Hung, Wei-Liang Lin, Chun-Kuang Chen
  • Publication number: 20160079190
    Abstract: Package structures and methods of forming package structures are discussed. A package structure, in accordance with some embodiments, includes an integrated circuit die, an encapsulant at least laterally encapsulating the integrated circuit die, a redistribution structure on the integrated circuit die and the encapsulant, a connector support metallization coupled to the redistribution structure, and an external connector on the connector support metallization. The redistribution structure includes a dielectric layer disposed distally from the encapsulant and the integrated circuit die. The connector support metallization has a first portion on a surface of the dielectric layer and has a second portion extending in an opening through the dielectric layer. The first portion of the connector support metallization has a sloped sidewall extending in a direction away from the surface of the dielectric layer.
    Type: Application
    Filed: January 26, 2015
    Publication date: March 17, 2016
    Inventors: Chen-Hua Yu, Chien-Yu Li, Hung-Jui Kuo, Li-Hsien Huang, Hsien-Wei Chen, Der-Chyang Yeh, Chung-Shi Liu, Shin-Puu Jeng
  • Patent number: 9185170
    Abstract: In general, techniques are described for delegating responsibility for performing a connectivity protocol from one or more endpoint devices to network infrastructure situated along a network forwarding path connecting the endpoint devices. In some examples, an intermediate network device includes a connectivity protocol module of control unit that operates a connectivity protocol session on behalf of a server, wherein the server exchanges application data with the client using an application-layer communication session with the client. The connectivity protocol module monitors connectivity for the application-layer communication session with the connectivity protocol session by exchanging connectivity protocol messages for the connectivity protocol session with the client to determine a connectivity status for the communication session.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: November 10, 2015
    Assignee: Juniper Networks, Inc.
    Inventors: Gert Grammel, Chien Yu Li, Theodore X. Qian
  • Patent number: 9166848
    Abstract: A frequency-shift keying (FSK) receiver includes an injection-locking oscillating circuit to receive a FSK input signal, and a phase detecting circuit. The injection-locking oscillating circuit outputs a locked signal having a phase that tracks a phase of the FSK input signal. A difference between the phases of the FSK input signal and the locked signal is associated with a difference between a frequency of the FSK input signal and a free-running frequency of the injection-locking oscillating circuit. The phase detecting circuit receives the FSK input signal and the locked signal, and outputs a baseband logic signal according to the difference between the phases of the FSK input signal and the locked signal.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: October 20, 2015
    Assignee: NATIONAL CHI NAN UNIVERSITY
    Inventors: Yo-Sheng Lin, Chien-Chin Wang, Chien-Yu Li
  • Publication number: 20150248068
    Abstract: A method for lithography exposing process is provided. The method includes performing a first lithography exposing process to a resist layer using a mask having a focus-sensitive pattern and an energy-sensitive pattern; measuring critical dimensions (CDs) of transferred focus-sensitive pattern and transferred energy-sensitive pattern on the resist layer; extracting Bossung curves from the CDs; and determining slops of the Bossung curves.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 3, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jhih-Yu Wang, Chien-Yu Li, Iu-Ren Chen, Chi-Cheng Hung, Wei-Liang Lin, Chun-Kuang Chen
  • Publication number: 20150139363
    Abstract: A frequency-shift keying (FSK) receiver includes an injection-locking oscillating circuit to receive a FSK input signal, and a phase detecting circuit. The injection-locking oscillating circuit outputs a locked signal having a phase that tracks a phase of the FSK input signal. A difference between the phases of the FSK input signal and the locked signal is associated with a difference between a frequency of the FSK input signal and a free-running frequency of the injection-locking oscillating circuit. The phase detecting circuit receives the FSK input signal and the locked signal, and outputs a baseband logic signal according to the difference between the phases of the FSK input signal and the locked signal.
    Type: Application
    Filed: May 20, 2014
    Publication date: May 21, 2015
    Applicant: National Chi Nan University
    Inventors: Yo-Sheng LIN, Chien-Chin WANG, Chien-Yu LI