Patents by Inventor Chih-Chieh Tsai

Chih-Chieh Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10497705
    Abstract: The present invention provides a bit line gate structure comprising a substrate, an amorphous silicon layer disposed on the substrate, a first doped region located in the amorphous silicon layer, a titanium silicon nitride (TiSiN) layer, located in the amorphous silicon layer, and a second doped region located in the TiSiN layer, the first doped region contacts the second doped region directly.
    Type: Grant
    Filed: May 6, 2018
    Date of Patent: December 3, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Pin-Hong Chen, Yi-Wei Chen, Chun-Chieh Chiu, Chih-Chieh Tsai, Tzu-Chieh Chen, Chih-Chien Liu
  • Publication number: 20190355827
    Abstract: Aspects of the disclosure provide a fin field effect transistor (FinFET) incorporating a fin top hardmask on top of a channel region of a fin. Because of the presence of the fin top hardmask, a gate height of the FinFET can be reduced without affecting proper operations of vertical gate channels on sidewalls of the fin. Consequently, parasitic capacitance between a gate stack and source/drain contacts of the FinFET can be reduced by lowering the gate height of the FinFET.
    Type: Application
    Filed: May 16, 2018
    Publication date: November 21, 2019
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Kai-Chieh Yang, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 10475900
    Abstract: A method for manufacturing a semiconductor device with a cobalt silicide film is provided in the present invention. The method includes the steps of providing a silicon structure with an interlayer dielectric formed thereon, forming a contact hole in the interlayer dielectric to expose the silicon structure, depositing a cobalt film on the exposed silicon structure at a temperature between 300° C.-400° C., wherein a cobalt protecting film is in-situ formed on the surface of the cobalt film, performing a rapid thermal process to transform the cobalt film into a cobalt silicide film, and removing untransformed cobalt film.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: November 12, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Kai-Jiun Chang, Tsun-Min Cheng, Chih-Chieh Tsai, Jui-Min Lee, Yi-Wei Chen, Chia-Lung Chang, Wei-Hsin Liu
  • Patent number: 10475799
    Abstract: A fabricating method of a semiconductive element includes providing a substrate, wherein an amorphous silicon layer covers the substrate. Then, a titanium nitride layer is provided to cover and contact the amorphous silicon layer. Later, a titanium layer is formed to cover the titanium nitride layer. Finally, a thermal process is performed to transform the titanium nitride layer into a nitrogen-containing titanium silicide layer.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: November 12, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Pin-Hong Chen, Yi-Wei Chen, Chih-Chieh Tsai, Tzu-Chieh Chen, Tsun-Min Cheng, Chi-Mao Hsu
  • Publication number: 20190319107
    Abstract: A method for fabricating semiconductor device includes the steps of first forming a silicon layer on a substrate and then forming a metal silicon nitride layer on the silicon layer, in which the metal silicon nitride layer includes a bottom portion, a middle portion, and a top portion and a concentration of silicon in the top portion is greater than a concentration of silicon in the middle portion. Next, a conductive layer is formed on the metal silicon nitride layer and the conductive layer, the metal silicon nitride layer, and the silicon layer are patterned to form a gate structure.
    Type: Application
    Filed: May 22, 2018
    Publication date: October 17, 2019
    Inventors: Chun-Chieh Chiu, Pin-Hong Chen, Yi-Wei Chen, Tsun-Min Cheng, Chih-Chien Liu, Tzu-Chieh Chen, Chih-Chieh Tsai, Kai-Jiun Chang, Yi-An Huang, Chia-Chen Wu, Tzu-Hao Liu
  • Publication number: 20190319031
    Abstract: The present invention provides a bit line gate structure comprising a substrate, an amorphous silicon layer disposed on the substrate, a first doped region located in the amorphous silicon layer, a titanium silicon nitride (TiSiN) layer, located in the amorphous silicon layer, and a second doped region located in the TiSiN layer, the first doped region contacts the second doped region directly.
    Type: Application
    Filed: May 6, 2018
    Publication date: October 17, 2019
    Inventors: Pin-Hong Chen, Yi-Wei Chen, Chun-Chieh Chiu, Chih-Chieh Tsai, Tzu-Chieh Chen, Chih-Chien Liu
  • Publication number: 20190252427
    Abstract: A device includes a semiconductor substrate having a front side and a backside. A photo-sensitive device is disposed at a surface of the semiconductor substrate, wherein the photo-sensitive device is configured to receive a light signal from the backside of the semiconductor substrate, and convert the light signal to an electrical signal. An amorphous-like adhesion layer is disposed on the backside of the semiconductor substrate. The amorphous-like adhesion layer includes a compound of nitrogen and a metal. A metal shielding layer is disposed on the backside of the semiconductor substrate and contacting the amorphous-like adhesion layer.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 15, 2019
    Inventors: Shih-Chieh Chang, Jian-Shin Tsai, Chih-Chang Huang, Ing-Ju Lee, Ching-Yao Sun, Jyun-Ru Wu, Ching-Che Huang, Szu-An Wu, Ying-Lang Wang
  • Patent number: 10374051
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a silicon layer on a substrate; forming a metal silicon nitride layer on the silicon layer; forming a stress layer on the metal silicon nitride layer; performing a thermal treatment process; removing the stress layer; forming a conductive layer on the metal silicon nitride layer; and patterning the conductive layer, the metal silicon nitride layer, and the silicon layer to form a gate structure.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: August 6, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Ji-Min Lin, Yi-Wei Chen, Tsun-Min Cheng, Pin-Hong Chen, Chih-Chien Liu, Chun-Chieh Chiu, Tzu-Chieh Chen, Chih-Chieh Tsai, Yi-An Huang, Kai-Jiun Chang
  • Publication number: 20190237468
    Abstract: A fabricating method of a semiconductive element includes providing a substrate, wherein an amorphous silicon layer covers the substrate. Then, a titanium nitride layer is provided to cover and contact the amorphous silicon layer. Later, a titanium layer is formed to cover the titanium nitride layer. Finally, a thermal process is performed to transform the titanium nitride layer into a nitrogen-containing titanium silicide layer.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 1, 2019
    Inventors: Pin-Hong Chen, Yi-Wei Chen, Chih-Chieh Tsai, Tzu-Chieh Chen, Tsun-Min Cheng, Chi-Mao Hsu
  • Patent number: 10357297
    Abstract: A bionic apparatus is provided. The bionic apparatus includes a flexible portion having a plurality of pores, a rigid portion connected with the flexible portion, and a supporting element disposed in the flexible portion. The pore size of each pore is between 50 ?m to 500 ?m. The flexible portion, the rigid portion and the supporting element are one-piece formed by a additive manufacturing process.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: July 23, 2019
    Assignees: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, NATIONAL TAIWAN UNIVERSITY HOSPITAL
    Inventors: Pei-Yi Tsai, Chih-Chieh Huang, Yi-Hung Wen, Hsin-Hsin Shen, Yi-Hung Lin, De-Yau Lin, Jui-Sheng Sun, Chuan-Sheng Chuang, An-Li Chen, Ching-Chih Lin
  • Publication number: 20190201461
    Abstract: The invention surprisingly found that Lactobacillus plantarum subsp. plantarum PS128 provides an advantageous effect in treatment or prevention of tic disorders and basal ganglia disorders. Accordingly, the invention provides a method of treating or preventing a movement disorder in a subject, comprising administering to a subject an effective amount of cells of a Lactobacillus plantarum subsp. plantarum PS128, which is deposited under DSMZ Accession No. DSM 28632.
    Type: Application
    Filed: July 19, 2016
    Publication date: July 4, 2019
    Inventors: Ying-Chieh TSAI, Chih-Chieh HSU, Jian-Fu LIAO, Yun-Fang CHENG, Shu-Ting YOU
  • Patent number: 10312242
    Abstract: A semiconductor memory device is provided, and which includes a substrate, plural gates, plural plugs, a capacitor structure and a conducting cap layer. The gates are disposed within the substrate, and the plugs are disposed on the substrate, with each plug electrically connected to two sides of each gate on the substrate. The capacitor structure is disposed on the substrate, and the capacitor structure includes plural capacitors, with each capacitor electrically connected to the plugs respectively. The conducting cap layer covers the top surface and sidewalls of the capacitor structure. Also, the semiconductor memory device further includes an adhesion layer and an insulating layer. The adhesion layer covers the conducting cap layer and the capacitor structure, and the insulating layer covers the adhesion layer.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: June 4, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Tzu-Chieh Chen, Pin-Hong Chen, Chih-Chieh Tsai, Chia-Chen Wu, Yi-An Huang, Kai-Jiun Chang, Tsun-Min Cheng, Yi-Wei Chen
  • Publication number: 20190157103
    Abstract: A planarization method and a CMP method are provided. The planarization method includes providing a substrate with a first region and a second region having different degrees of hydrophobicity or hydrophilicity and performing a surface treatment to the first region to render the degrees of hydrophobicity or hydrophilicity in proximity to that of the second region. The CMP method includes providing a substrate with a first region and a second region; providing a polishing slurry on the substrate, wherein the polishing slurry and the surface of the first region have a first contact angle, and the polishing slurry and the surface of the first region have a second contact angle; modifying the surface of the first region to make a contact angle difference between the first contact angle and the second contact angle equal to or less than 30 degrees.
    Type: Application
    Filed: June 8, 2018
    Publication date: May 23, 2019
    Inventors: TUNG-KAI CHEN, CHING-HSIANG TSAI, KAO-FENG LIAO, CHIH-CHIEH CHANG, CHUN-HAO KUNG, FANG-I CHIH, HSIN-YING HO, CHIA-JUNG HSU, HUI-CHI HUANG, KEI-WEI CHEN
  • Publication number: 20190142488
    Abstract: A minimally invasive bone fracture positioning device includes a sleeve, a movable unit, and a support. The sleeve includes an alignment portion located on a longitudinal axis of the sleeve. The movable unit includes a positioning portion. The positioning portion is located on the longitudinal axis and is spaced from the alignment portion. The movable unit is mounted in a radial direction of the sleeve. The movable unit is slideable relative to the sleeve along the longitudinal axis. A support is coupled to the sleeve and the movable unit. The movable unit is spaced from the sleeve by the support.
    Type: Application
    Filed: November 16, 2017
    Publication date: May 16, 2019
    Inventors: Yue-Jun Wang, Chih-Hao Chang, Shih-Hua Huang, Chih-Lung Lin, Tung-Lin Tsai, Chun-Chieh Tseng, Li-Wen Weng
  • Patent number: 10290638
    Abstract: A method of forming dynamic random access memory (DRAM) device, comprises the following steps. First of all, a plurality of active areas is formed in a substrate along a first direction. Next, a plurality of buried gates disposed in the substrate is formed along a second trench extending along a second direction across the first direction. Then, a plurality of bit lines is formed over the buried gates and extended along a third direction across the first direction and the second direction, wherein each of the bit lines comprises a polysilicon layer, a barrier layer and a metal layer and the barrier layer is formed through a radio frequency physical vapor deposition (RF-PVD) process.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: May 14, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Yi-Wei Chen, Tsun-Min Cheng, Shih-Fang Tzou, Chih-Chieh Tsai, Kai-Jiun Chang
  • Patent number: 10276389
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a silicon layer on a substrate; forming a first metal silicon nitride layer on the silicon layer; performing an oxygen treatment process to form an oxide layer on the first metal silicon nitride layer; forming a second metal silicon nitride layer on the oxide layer; forming a conductive layer on the second metal silicon nitride layer; and patterning the conductive layer, the second metal silicon nitride layer, the oxide layer, the first metal silicon nitride layer, and the silicon layer to form a gate structure.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: April 30, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Chih-Chieh Tsai, Yi-Wei Chen, Pin-Hong Chen, Chih-Chien Liu, Tzu-Chieh Chen, Chun-Chieh Chiu, Tsun-Min Cheng, Kai-Jiun Chang, Chia-Chen Wu, Yi-An Huang
  • Publication number: 20190067296
    Abstract: A method for fabricating buried word line of a dynamic random access memory (DRAM) includes the steps of: forming a trench in a substrate; forming a first conductive layer in the trench; forming a second conductive layer on the first conductive layer, in which the second conductive layer above the substrate and the second conductive layer below the substrate comprise different thickness; and forming a third conductive layer on the second conductive layer to fill the trench.
    Type: Application
    Filed: September 22, 2017
    Publication date: February 28, 2019
    Inventors: Pin-Hong Chen, Yi-Wei Chen, Tzu-Chieh Chen, Chih-Chieh Tsai, Chia-Chen Wu, Kai-Jiun Chang, Yi-An Huang, Tsun-Min Cheng
  • Patent number: 10211211
    Abstract: A method for fabricating a buried word line (BWL) of a dynamic random access memory (DRAM) includes the steps of: forming a trench in a substrate; forming a barrier layer in the trench; performing a soaking process to reduce chlorine concentration in the barrier layer; and forming a conductive layer to fill the trench.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: February 19, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Kai-Jiun Chang, Yi-Wei Chen, Tsun-Min Cheng, Chia-Chen Wu, Pin-Hong Chen, Chih-Chieh Tsai, Tzu-Chieh Chen, Yi-An Huang
  • Publication number: 20190027479
    Abstract: A method of fabricating a cobalt silicide layer includes providing a substrate disposed in a chamber. A deposition process is performed to form a cobalt layer covering the substrate. The deposition process is performed when the temperature of the substrate is between 50° C. and 100° C., and the temperature of the chamber is between 300° C. and 350° C. After the deposition process, an annealing process is performed to transform the cobalt layer into a cobalt silicide layer. The annealing process is performed when the substrate is between 300° C. and 350° C., and the duration of the annealing process is between 50 seconds and 60 seconds.
    Type: Application
    Filed: May 29, 2018
    Publication date: January 24, 2019
    Inventors: Chia-Chen Wu, Yi-Wei Chen, Chi-Mao Hsu, Kai-Jiun Chang, Chih-Chieh Tsai, Pin-Hong Chen, Tsun-Min Cheng, Yi-An Huang
  • Publication number: 20190013320
    Abstract: A semiconductor memory device is provided, and which includes a substrate, plural gates, plural plugs, a capacitor structure and a conducting cap layer. The gates are disposed within the substrate, and the plugs are disposed on the substrate, with each plug electrically connected to two sides of each gate on the substrate. The capacitor structure is disposed on the substrate, and the capacitor structure includes plural capacitors, with each capacitor electrically connected to the plugs respectively. The conducting cap layer covers the top surface and sidewalls of the capacitor structure. Also, the semiconductor memory device further includes an adhesion layer and an insulating layer. The adhesion layer covers the conducting cap layer and the capacitor structure, and the insulating layer covers the adhesion layer.
    Type: Application
    Filed: May 22, 2018
    Publication date: January 10, 2019
    Inventors: Tzu-Chieh Chen, Pin-Hong Chen, Chih-Chieh Tsai, Chia-Chen Wu, Yi-An Huang, Kai-Jiun Chang, Tsun-Min Cheng, Yi-Wei Chen