Patents by Inventor Chih-Hao Tsai

Chih-Hao Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240159642
    Abstract: A smoke detector with an anti-insect function includes a substrate, an optical detection module, a top cover, a base and a perforated plate. The substrate has a ring shape region surrounding a central detection region, and a first block structure of the central detection region is protruded from the substrate and higher than an upper surface of the ring shape region. The optical detection module is disposed inside the central detection region. The top cover has a lateral wall. The base is disposed on the substrate and connected to the top cover to cover the optical detection module. The base has a second block structure partly overlapped with the lateral wall to form a guiding channel. The perforated plate is disposed between the lateral wall and the second block structure to prevent an insect from moving into the top cover through the guiding channel.
    Type: Application
    Filed: January 25, 2024
    Publication date: May 16, 2024
    Applicant: PixArt Imaging Inc.
    Inventors: Yen-Chang Chu, Cheng-Nan Tsai, Chih-Ming Sun, Zhi-Hao Wu, Hung-Yu Lai
  • Publication number: 20240162218
    Abstract: An electrostatic discharge device including a gate structure, a plurality of first doped regions, and a plurality of second doped regions. The gate structure is disposed on a substrate. The gate structure includes a body part and a plurality of extension parts. The extension parts are connected with the body part, and an extension direction of the body part is different from an extension direction of the extension parts. The first doped regions are located in the substrate between the extension parts. The second doped regions are located in the substrate at two outer sides of the extension parts. The first doped regions and the second doped regions have different conductivity types.
    Type: Application
    Filed: February 6, 2023
    Publication date: May 16, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Chih Hsiang Chang, Mei-Ling Chao, Yin-Chia Tsai, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 11978782
    Abstract: The present disclosure relates to a hybrid integrated circuit. In one implementation, an integrated circuit may have a first region with a first gate structure having a ferroelectric gate dielectric, at least one source associated with the first gate of the first region, and at least one drain associated with the first gate structure of the first region. Moreover, the integrated circuit may have a second region with a second gate structure having a high-? gate dielectric, at least one source associated with the second gate structure of the second region, and at least one drain associated with the second gate structure of the second region. The integrated circuit may further have at least one trench isolation between the first region and the second region.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Yi Chuang, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240145555
    Abstract: Semiconductor structures and processes are provided. A semiconductor structure of the present disclosure includes a first base portion and a second base portion extending lengthwise along a first direction, a first source/drain feature disposed over the first base portion, a second source/drain feature disposed over the second base portion, a center dielectric fin sandwiched between the first source/drain feature and the second source/drain feature along a second direction perpendicular to the first direction, and a source/drain contact disposed over the first source/drain feature, the second source/drain feature and the center dielectric fin. A portion of the source/drain contact extends between the first source/drain feature and the second source/drain feature along the second direction.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 2, 2024
    Inventors: Ming-Heng Tsai, Chih-Hao Chang, Chun-Sheng Liang, Ta-Chun Lin
  • Publication number: 20240142732
    Abstract: A method includes forming a first waveguide over a substrate; forming a first layer of low-dimensional material on the first waveguide; forming a first layer of dielectric material over the first layer of low-dimensional material; forming a second layer of low dimensional material on the first layer of dielectric material; and forming a first conductive contact that electrically contacts the first layer of low-dimensional material and a second conductive contact that electrically contacts the second layer of low-dimensional material.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 2, 2024
    Inventors: Chih-Hsin Lu, Chin-Her Chien, Chung-Hao Tsai, Chuei-Tang Wang, Chen-Hua Yu
  • Patent number: 11961900
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes device fins formed on a substrate; fill fins formed on the substrate and disposed among the device fins; and gate stacks formed on the device fins and the fill fins. The fill fins include a first dielectric material layer and a second dielectric material layer deposited on the first dielectric material layer. The first and second dielectric material layers are different from each other in composition.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Chiang, Teng-Chun Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11961897
    Abstract: A first fin structure is disposed over a substrate. The first fin structure contains a semiconductor material. A gate dielectric layer is disposed over upper and side surfaces of the first fin structure. A gate electrode layer is formed over the gate dielectric layer. A second fin structure is disposed over the substrate. The second fin structure is physically separated from the first fin structure and contains a ferroelectric material. The second fin structure is electrically coupled to the gate electrode layer.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Hsing Hsu, Sai-Hooi Yeong, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang, Min Cao
  • Patent number: 11961913
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a source/drain feature on a semiconductor fin structure, a first isolation structure surrounding the semiconductor fin structure, source/drain spacers on the first isolation structure and surrounding a lower portion of the source/drain feature, a dielectric fin structure adjoining and in direct contact with the first isolation structure and one of the source/drain spacers, and an interlayer dielectric layer over the source/drain spacers and the dielectric fin structure and surrounding an upper portion of the source/drain feature.
    Type: Grant
    Filed: April 21, 2023
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Chiang, Shi-Ning Ju, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240119875
    Abstract: A mending method for a display includes the steps of making a display device light to make a plurality of light emitting positions thereof shine, searching out a plurality of defect positions among the light emitting positions, providing a transferring device having a transferring surface with a plurality of miniature light emitting elements positioned correspondingly to the light emitting positions, planning a mending procedure which includes in the area the transferring surface corresponds to, choosing in chief the largest number of defect positions able to be mended at a single time according to the positions of the miniature light emitting elements and then in the area the transferring surface corresponds to, planning the rest of the defect positions according to the rest of the miniature light emitting elements, and according to the mending procedure, moving the transferring device to weld the miniature light emitting elements at the defect positions.
    Type: Application
    Filed: October 5, 2023
    Publication date: April 11, 2024
    Inventors: Tsan-Jen CHEN, Chih-Hao TSAI, Yu-Cheng YANG, Jen-Hung Lo, Yan-Ru TSAI
  • Publication number: 20240120272
    Abstract: Embodiments of the present disclosure relates to a method for forming a semiconductor device structure. The method includes including forming one or more conductive features in a first interlayer dielectric (ILD), forming an etch stop layer on the first ILD, forming a second ILD over the etch stop layer, forming one or more openings through the second ILD and the etch stop layer to expose a top surface of the one or more first conductive features, wherein the one or more openings are formed by a first etch process in a first process chamber, exposing the one or more openings to a second etch process in a second process chamber so that the shape of the or more openings is elongated, and filling the one or more openings with a conductive material.
    Type: Application
    Filed: January 15, 2023
    Publication date: April 11, 2024
    Inventors: Wei-Hao LIAO, Hsi-Wen TIEN, Chih Wei LU, Yung-Hsu WU, Cherng-Shiaw TSAI, Chia-Wei SU
  • Patent number: 11949056
    Abstract: The light emitting diode packaging structure includes a flexible substrate, a first adhesive layer, micro light emitting elements, a conductive pad, a redistribution layer, and an electrode pad. The first adhesive layer is disposed on the flexible substrate. The micro light emitting elements are disposed on the first adhesive layer and have a first surface facing to the first adhesive layer and an opposing second surface. The micro light emitting elements include a red micro light emitting element, a blue micro light emitting element, and a green micro light emitting element. The conductive pad is disposed on the second surface of the micro light emitting element. The redistribution layer covers the micro light emitting elements and the conductive pad. The electrode pad is disposed on the redistribution layer and is electrically connected to the circuit layer. A thickness of the flexible substrate is less than 100 um.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: April 2, 2024
    Assignee: Lextar Electronics Corporation
    Inventors: Chih-Hao Lin, Jo-Hsiang Chen, Shih-Lun Lai, Min-Che Tsai, Jian-Chin Liang
  • Patent number: 11948970
    Abstract: A semiconductor device includes a semiconductor fin, a gate structure, and a dielectric isolation plug. The semiconductor fin extends along a first direction above a substrate and includes a silicon germanium layer and a silicon layer over the silicon germanium layer. The gate structure extends across the semiconductor fin along a second direction perpendicular to the first direction. The dielectric isolation plug extends downwardly from a top surface of the silicon layer into the silicon germanium layer when viewed in a cross section taken along the first direction.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Ching, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11942548
    Abstract: A multi-gate semiconductor device is formed that provides a first fin element extending from a substrate. A gate structure extends over a channel region of the first fin element. The channel region of the first fin element includes a plurality of channel semiconductor layers each surrounded by a portion of the gate structure. A source/drain region of the first fin element is adjacent the gate structure. The source/drain region includes a first semiconductor layer, a dielectric layer over the first semiconductor layer, and a second semiconductor layer over the dielectric layer.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Ching-Wei Tsai, Carlos H. Diaz, Chih-Hao Wang, Wai-Yi Lien, Ying-Keung Leung
  • Publication number: 20240096701
    Abstract: A device includes: a stack of semiconductor nanostructures; a gate structure wrapping around the semiconductor nanostructures, the gate structure extending in a first direction; a source/drain region abutting the gate structure and the stack in a second direction transverse the first direction; a contact structure on the source/drain region; a backside conductive trace under the stack, the backside conductive trace extending in the second direction; a first through via that extends vertically from the contact structure to a top surface of the backside dielectric layer; and a gate isolation structure that abuts the first through via in the second direction.
    Type: Application
    Filed: May 17, 2023
    Publication date: March 21, 2024
    Inventors: Chun-Yuan CHEN, Huan-Chieh SU, Ching-Wei TSAI, Shang-Wen CHANG, Yi-Hsun CHIU, Chih-Hao WANG
  • Publication number: 20240089607
    Abstract: An image sensing device and a control device of an illumination device thereof are provided. The control device includes a control circuit, an operation circuit, and multiple driving signal generators. The control circuit generates multiple control signals. The operation circuit performs a logical operation on the control signals and an image capturing signal to generate multiple operation results. The driving signal generator respectively provides multiple driving signals to the illumination device according to the operation results, and the driving signals respectively have multiple different output powers.
    Type: Application
    Filed: May 29, 2023
    Publication date: March 14, 2024
    Applicant: HTC Corporation
    Inventors: Chao Shuan Huang, Sheng-Long Wu, Yu-Jui Hsu, Shih-Yao Tsai, Tun-Hao Chao, Sen-Lin Chung, Chih Pin Chung, Chih-Yuan Chien, Shih Hong Sun
  • Publication number: 20240088149
    Abstract: A semiconductor structure includes: a substrate; a first fin and a second fin disposed on the substrate and spaced apart from each other; a dielectric wall disposed on the substrate and having first and second wall surfaces; a third fin disposed on the substrate to be in direct contact with at least one of the first and second fins; a first device disposed on the first fin and including first channel features extending away from the first wall surface; a second device disposed on the second fin and including second channel features extending away from the second wall surface; at least one third device disposed on the third fin and including third channel features; and an isolation feature disposed on the substrate to permit the third device to be electrically isolated from the first and second devices. A method for manufacturing the semiconductor structure is also disclosed.
    Type: Application
    Filed: February 15, 2023
    Publication date: March 14, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun LIN, Ming-Heng TSAI, Huang-Chao CHANG, Chun-Sheng LIANG, Chih-Hao CHANG, Jhon Jhy LIAW
  • Publication number: 20240071953
    Abstract: A memory device including a base semiconductor die, conductive terminals, memory dies, an insulating encapsulation and a buffer cap is provided. The conductive terminals are disposed on a first surface of the base semiconductor die. The memory dies are stacked over a second surface of the base semiconductor die, and the second surface of the base semiconductor die is opposite to the first surface of the base semiconductor die. The insulating encapsulation is disposed on the second surface of the base semiconductor die and laterally encapsulates the memory dies. The buffer cap covers the first surface of the base semiconductor die, sidewalls of the base semiconductor die and sidewalls of the insulating encapsulation. A package structure including the above- mentioned memory device is also provided.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Ming Chiang, Chao-wei Li, Wei-Lun Tsai, Chia-Min Lin, Yi-Da Tsai, Sheng-Feng Weng, Yu-Hao Chen, Sheng-Hsiang Chiu, Chih-Wei Lin, Ching-Hua Hsieh
  • Publication number: 20240071954
    Abstract: A memory device including a base semiconductor die, conductive terminals, memory dies, an insulating encapsulation and a buffer cap is provided. The conductive terminals are disposed on a first surface of the base semiconductor die. The memory dies are stacked over a second surface of the base semiconductor die, and the second surface of the base semiconductor die is opposite to the first surface of the base semiconductor die. The insulating encapsulation is disposed on the second surface of the base semiconductor die and laterally encapsulates the memory dies. The buffer cap covers the first surface of the base semiconductor die, sidewalls of the base semiconductor die and sidewalls of the insulating encapsulation. A package structure including the above-mentioned memory device is also provided.
    Type: Application
    Filed: November 9, 2023
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Ming Chiang, Chao-wei Li, Wei-Lun Tsai, Chia-Min Lin, Yi-Da Tsai, Sheng-Feng Weng, Yu-Hao Chen, Sheng-Hsiang Chiu, Chih-Wei Lin, Ching-Hua Hsieh
  • Patent number: 11916128
    Abstract: The present disclosure provides a method of forming a semiconductor device including an nFET structure and a pFET structure where each of the nFET and pFET structures include a semiconductor substrate and a gate trench. The method includes depositing an interfacial layer in each gate trench, depositing a first ferroelectric layer over the interfacial layer, removing the first ferroelectric layer from the nFET structure, depositing a metal oxide layer in each gate trench, depositing a second ferroelectric layer over the metal oxide layer, removing the second ferroelectric layer from the pFET structure, and depositing a gate electrode in each gate trench.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: February 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Min Cao, Pei-Yu Wang, Sai-Hooi Yeong, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11913876
    Abstract: An optical water-quality detection apparatus includes a detection device, a biofilm-inhibition light source, a detection light source and a sensor. The detection device includes a detection chamber. The biofilm-inhibition light source is disposed outside the detection chamber and configured to emit biofilm-inhibition light. The detection light source is disposed outside the detection chamber and configured to emit detection light. The sensor is configured to sense the detection light penetrating the detection chamber. A beam of the detection light and a beam of the inhibition light overlaps as penetrating the detection chamber.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: February 27, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chia-Jung Chang, Jui-Hung Tsai, Ying-Hao Wang, Chih-Hao Hsu