Patents by Inventor Chih-Hsin Ko

Chih-Hsin Ko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11404322
    Abstract: In a method of manufacturing a semiconductor device, a fin structure is formed by patterning a semiconductor layer, and an annealing operation is performed on the fin structure. In the patterning of the semiconductor layer, a damaged area is formed on a sidewall of the fin structure, and the annealing operation eliminates the damaged area.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: August 2, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun Hsiung Tsai, Yu-Ming Lin, Kuo-Feng Yu, Ming-Hsi Yeh, Shahaji B. More, Chandrashekhar Prakash Savant, Chih-Hsin Ko, Clement Hsingjen Wann
  • Patent number: 11393713
    Abstract: In a method of manufacturing a semiconductor device including a field effect transistor (FET), a sacrificial region is formed in a substrate, and a trench is formed in the substrate. A part of the sacrificial region is exposed in the trench. A space is formed by at least partially etching the sacrificial region, an isolation insulating layer is formed in the trench and the space, and a gate structure and a source/drain region are formed. An air spacer is formed in the space under the source/drain region.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: July 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Clement Hsinghen Wann, Chun Hsiung Tsai, Shahaji B. More, Che-Chih Hsu, Chinyu Su, Po-Han Tseng, Wen Han Hung, Chih-Hsin Ko, Yu-Ming Lin
  • Patent number: 11362000
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: June 14, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20220173245
    Abstract: A field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.
    Type: Application
    Filed: February 14, 2022
    Publication date: June 2, 2022
    Inventors: Tsung-Lin Lee, Chih-Hao Chang, Chih-Hsin Ko, Feng Yuan, Jeff J. Xu
  • Patent number: 11251303
    Abstract: A field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: February 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Lin Lee, Chih-Hao Chang, Chih-Hsin Ko, Feng Yuan, Jeff J. Xu
  • Publication number: 20220045190
    Abstract: In a method of manufacturing a semiconductor device, a gate dielectric layer is formed over a channel region made of a semiconductor material, a first barrier layer is formed on the gate dielectric layer, a second barrier layer is formed on the first barrier layer, a first work function adjustment layer is formed on the second barrier layer, the first work function adjustment layer and the second barrier layer are removed. After the first work function adjustment layer and the second barrier layer are removed, a second work function adjustment layer is formed over the gate dielectric layer, and a metal gate electrode layer is formed over the second work function adjustment layer.
    Type: Application
    Filed: October 25, 2021
    Publication date: February 10, 2022
    Inventors: Yi-Jing LEE, Chih-Hsin KO, Clement Hsingjen WANN
  • Patent number: 11177368
    Abstract: Methods of semiconductor arrangement formation are provided. A method of forming the semiconductor arrangement includes forming a first nucleus on a substrate in a trench or between dielectric pillars on the substrate. Forming the first nucleus includes applying a first source material beam at a first angle relative to a top surface of the substrate and concurrently applying a second source material beam at a second angle relative to the top surface of the substrate. A first semiconductor column is formed from the first nucleus by rotating the substrate while applying the first source material beam and the second source material beam. Forming the first semiconductor column in the trench or between the dielectric pillars using the first source material beam and the second source material beam restricts the formation of the first semiconductor column to a single direction.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: November 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Wei-Chieh Chen, Hao-Hsiung Lin, Shu-Han Chen, You-Ru Lin, Cheng-Hsien Wu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Publication number: 20210351080
    Abstract: In a method of manufacturing a semiconductor device, a fin structure is formed by patterning a semiconductor layer, and an annealing operation is performed on the fin structure. In the patterning of the semiconductor layer, a damaged area is formed on a sidewall of the fin structure, and the annealing operation eliminates the damaged area.
    Type: Application
    Filed: February 4, 2021
    Publication date: November 11, 2021
    Inventors: Chun Hsiung TSAI, Yu-Ming LIN, Kuo-Feng YU, Ming-Hsi YEH, Shahaji B. MORE, Chandrashekhar Prakash SAVANT, Chih-Hsin KO, Clement Hsingjen WANN
  • Publication number: 20210342514
    Abstract: A method of operating an IC manufacturing system includes determining whether an n-type active region of a cell or a p-type active region of the cell is a first active region based on a timing critical path of the cell, positioning the first active region along a cell height direction in an IC layout diagram of a cell, the first active region having a first total number of fins extending in a direction perpendicular to the cell height direction. The method also includes positioning a second active region in the cell along the cell height direction, the second active region being the n-type or p-type opposite the n-type or p-type of the first active region and having a second total number of fins less than the first total number of fins and extending in the direction, and storing the IC layout diagram of the cell in a cell library.
    Type: Application
    Filed: July 15, 2021
    Publication date: November 4, 2021
    Inventors: Po-Hsiang HUANG, Fong-Yuan CHANG, Clement Hsingjen WANN, Chih-Hsin KO, Sheng-Hsiung CHEN, Li-Chun TIEN, Chia-Ming HSU
  • Patent number: 11158739
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a substrate; a gate structure formed over the substrate; a source region and a drain region formed in the substrate on either side of the gate structure, the source region and the drain region both having a first type of conductivity; and a field plate formed over the substrate between the gate structure and the drain region; wherein the field plate is coupled to the source region or a bulk electrode of the substrate. An associated method for fabricating the semiconductor structure is also disclosed.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: October 26, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ruey-Hsin Liu, Kuang-Hsin Chen, Chih-Hsin Ko, Shih-Fen Huang
  • Patent number: 11127837
    Abstract: Devices are described herein that include an epitaxial layer, a cap layer above the epitaxial layer, a gate layer adjacent to the epitaxial layer on which an etching process is performed, a trench above the cap layer, and a source/drain portion includes the epitaxial layer.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: September 21, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ching-Feng Fu, Yu-Chan Yen, Chih-Hsin Ko, Chun-Hung Lee, Huan-Just Lin, Hui-Cheng Chang
  • Publication number: 20210272849
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 11080453
    Abstract: A method of operating an IC manufacturing system includes determining whether an n-type active region of a cell or a p-type active region of the cell is a first active region based on a timing critical path of the cell, positioning the first active region along a cell height direction in an IC layout diagram of a cell, the first active region having a first total number of fins extending in a direction perpendicular to the cell height direction. The method also includes positioning a second active region in the cell along the cell height direction, the second active region being the n-type or p-type opposite the n-type or p-type of the first active region and having a second total number of fins less than the first total number of fins and extending in the direction, and storing the IC layout diagram of the cell in a cell library.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: August 3, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Po-Hsiang Huang, Sheng-Hsiung Chen, Chih-Hsin Ko, Fong-Yuan Chang, Clement Hsingjen Wann, Li-Chun Tien, Chia-Ming Hsu
  • Publication number: 20210193837
    Abstract: A field effect transistor (FET) device includes a substrate, a gate structure over the substrate, a channel region under the gate structure, the channel region including a first semiconductor material, and a second semiconductor material interposed between the first semiconductor material and the substrate. The second semiconductor material is different from the first semiconductor material. An interface of the second semiconductor material with the first semiconductor material has facets. A surface of the second semiconductor material interfacing with the substrate is non-planar.
    Type: Application
    Filed: February 10, 2021
    Publication date: June 24, 2021
    Inventors: Cheng-Hsien Wu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Patent number: 10998442
    Abstract: A field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: May 4, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Lin Lee, Chih-Hao Chang, Chih-Hsin Ko, Feng Yuan, Jeff J. Xu
  • Patent number: 10978451
    Abstract: An embodiment complimentary metal-oxide-semiconductor (CMOS) device and an embodiment method of forming the same are provided. The embodiment CMOS device includes an n-type metal-oxide-semiconductor (NMOS) having a titanium-containing layer interposed between a first metal contact and an NMOS source and a second metal contact and an NMOS drain and a p-type metal-oxide-semiconductor (PMOS) having a PMOS source and a PMOS drain, the PMOS source having a first titanium-containing region facing a third metal contact, the PMOS drain including a second titanium-containing region facing a fourth metal contact.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: April 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Clement Hsingjen Wann, Chih-Hsin Ko, Cheng-Hsien Wu, Ding-Kang Shih, Hau-Yu Lin
  • Patent number: 10964817
    Abstract: A device with improved device performance, and method of manufacturing the same, are disclosed. An exemplary device includes a group III-V compound semiconductor substrate that includes a surface having a (110) crystallographic orientation, and a gate stack disposed over the group III-V compound semiconductor substrate. The gate stack includes a high-k dielectric layer disposed on the surface having the (110) crystallographic orientation, and a gate electrode disposed over the high-k dielectric layer.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: March 30, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chao-Ching Cheng, Chih-Hsin Ko, Hsingjen Wann
  • Publication number: 20210036131
    Abstract: The present disclosure provides a FinFET device. The FinFET device comprises a semiconductor substrate of a first semiconductor material; a fin structure of the first semiconductor material overlying the semiconductor substrate, wherein the fin structure has a top surface of a first crystal plane orientation; a diamond-like shape structure of a second semiconductor material disposed over the top surface of the fin structure, wherein the diamond-like shape structure has at least one surface of a second crystal plane orientation; a gate structure disposed over the diamond-like shape structure, wherein the gate structure separates a source region and a drain region; and a channel region defined in the diamond-like shape structure between the source and drain regions.
    Type: Application
    Filed: October 5, 2020
    Publication date: February 4, 2021
    Inventors: You-Ru Lin, Cheng-Hsien Wu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Publication number: 20210028069
    Abstract: A method includes: providing a substrate; forming a first pair of source/drain regions in the substrate; disposing an interlayer dielectric layer over the substrate, the interlayer dielectric layer having a first trench between the first pair of source/drain regions; depositing a dielectric layer in the first trench; depositing a barrier layer over the dielectric layer; performing an operation on the substrate; removing the barrier layer from the first trench to expose the dielectric layer subsequent to the operation; and depositing a work function layer over the dielectric layer in the first trench.
    Type: Application
    Filed: October 9, 2020
    Publication date: January 28, 2021
    Inventors: YI-JING LEE, YA-YUN CHENG, HAU-YU LIN, I-SHENG CHEN, CHIA-MING HSU, CHIH-HSIN KO, CLEMENT HSINGJEN WANN
  • Patent number: 10879065
    Abstract: A method of forming an integrated circuit structure includes forming an insulation layer over at least a portion of a substrate; forming a plurality of semiconductor pillars over a top surface of the insulation layer. The plurality of semiconductor pillars is horizontally spaced apart by portions of the insulation layer. The plurality of semiconductor pillars is allocated in a periodic pattern. The method further includes epitaxially growing a III-V compound semiconductor film from top surfaces and sidewalls of the semiconductor pillars.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsin Ko, Cheng-Hsien Wu, Clement Hsingjen Wann