Patents by Inventor Chih-Jen Chan

Chih-Jen Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10138118
    Abstract: An integrated circuit (IC) device is provided. The IC device includes a first die including a first substrate and a second die including a second substrate. A plasma-reflecting layer is included on an upper surface of the first die. The plasma-reflecting layer is configured to reflect a plasma therefrom. The second substrate is bonded to the first die so as to form a cavity, wherein a lower surface of the cavity is lined by the plasma-reflecting layer. A dielectric protection layer is present on a lower surface of the second die and lines the upper surface of the cavity. A material of the second substrate has a first etch rate for the plasma and a material of the dielectric protection layer has a second etch rate for the plasma. The second etch rate is less than the first etch rate.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: November 27, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Yen Chou, Chih-Jen Chan, Chia-Shiung Tsai, Ru-Liang Lee, Yuan-Chih Hsieh
  • Patent number: 10049890
    Abstract: The present disclosure provides a semiconductor structure, comprising a substrate, dielectric layers and conductive layers. A first dielectric layer is disposed on a bottom surface and sidewall surfaces of a filled trench of the substrate. A first conductive layer is disposed on the first dielectric layer and has a first surface in the filled trench and a second surface above the substrate. A second dielectric layer is disposed on the first conductive layer. A second conductive layer is disposed on the second dielectric layer and has a first surface in the filled trench and a second surface above the substrate. A third dielectric layer is disposed on the second conductive layer. A third conductive layer is disposed in the filled trench and on the third dielectric layer. A top surface of the third conductive layer is lower than the second surface of the second conductive layer.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: August 14, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chung-Yen Chou, Chih-Jen Chan, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20180076276
    Abstract: The present disclosure provides a semiconductor structure, comprising a substrate, dielectric layers and conductive layers. A first dielectric layer is disposed on a bottom surface and sidewall surfaces of a filled trench of the substrate. A first conductive layer is disposed on the first dielectric layer and has a first surface in the filled trench and a second surface above the substrate. A second dielectric layer is disposed on the first conductive layer. A second conductive layer is disposed on the second dielectric layer and has a first surface in the filled trench and a second surface above the substrate. A third dielectric layer is disposed on the second conductive layer. A third conductive layer is disposed in the filled trench and on the third dielectric layer. A top surface of the third conductive layer is lower than the second surface of the second conductive layer.
    Type: Application
    Filed: September 9, 2016
    Publication date: March 15, 2018
    Inventors: CHUNG-YEN CHOU, CHIH-JEN CHAN, SHIH-CHANG LIU, CHIA-SHIUNG TSAI
  • Publication number: 20170355598
    Abstract: An integrated circuit (IC) device is provided. The IC device includes a first die including a first substrate and a second die including a second substrate. A plasma-reflecting layer is included on an upper surface of the first die. The plasma-reflecting layer is configured to reflect a plasma therefrom. The second substrate is bonded to the first die so as to form a cavity, wherein a lower surface of the cavity is lined by the plasma-reflecting layer. A dielectric protection layer is present on a lower surface of the second die and lines the upper surface of the cavity. A material of the second substrate has a first etch rate for the plasma and a material of the dielectric protection layer has a second etch rate for the plasma. The second etch rate is less than the first etch rate.
    Type: Application
    Filed: August 8, 2017
    Publication date: December 14, 2017
    Inventors: Chung-Yen Chou, Chih-Jen Chan, Chia-Shiung Tsai, Ru-Liang Lee, Yuan-Chih Hsieh
  • Patent number: 9796584
    Abstract: A bio-sensing semiconductor structure is provided. A transistor includes a channel region and a gate underlying the channel region. A first dielectric layer overlies the transistor. A first opening extends through the first dielectric layer to expose the channel region. A bio-sensing layer lines the first opening and covers an upper surface of the channel region. A second dielectric layer lines the first opening over the bio-sensing layer. A second opening within the first opening extends to the bio-sensing layer, through a region of the second dielectric layer overlying the channel region. A method for manufacturing the bio-sensing semiconductor structure is also provided.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: October 24, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Ming Chang, Chih-Jen Chan, Chung-Yen Chou, Lee-Chuan Tseng, Shih-Wei Lin, Yuan-Chih Hsieh
  • Patent number: 9738516
    Abstract: A method of forming an IC (integrated circuit) device is provided. The method includes receiving a first wafer including a first substrate and including a plasma-reflecting layer disposed on an upper surface thereof. The plasma-reflecting layer is configured to reflect a plasma therefrom. A dielectric protection layer is formed on a lower surface of a second wafer, wherein the second wafer includes a second substrate. The second wafer is bonded to the first wafer, such that a cavity is formed between the plasma-reflecting layer and the dielectric protection layer. An etch process is performed with the plasma to form an opening extending from an upper surface of the second wafer and through the dielectric protection layer into the cavity. A resulting structure of the above method is also provided.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: August 22, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Yen Chou, Chih-Jen Chan, Chia-Shiung Tsai, Ru-Liang Lee, Yuan-Chih Hsieh
  • Patent number: 9708179
    Abstract: In some embodiments, the present disclosure relates to a MEMs (microelectromechanical system) package device having a getter layer. The MEMs package includes a first substrate having a cavity located within an upper surface of the first substrate. The cavity has roughened interior surfaces. A getter layer is arranged onto the roughened interior surfaces of the cavity. A bonding layer is arranged on the upper surface of the first substrate on opposing sides of the cavity, and a second substrate bonded to the first substrate by the bonding layer. The second substrate is arranged over the cavity. The roughened interior surfaces of the cavity enables more effective absorption of residual gases, thereby increasing the efficiency of a gettering process.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yuan-Chih Hsieh, Li-Cheng Chu, Hung-Hua Lin, Chih-Jen Chan, Lan-Lin Chao
  • Publication number: 20170158500
    Abstract: A bio-sensing semiconductor structure is provided. A transistor includes a channel region and a gate underlying the channel region. A first dielectric layer overlies the transistor. A first opening extends through the first dielectric layer to expose the channel region. A bio-sensing layer lines the first opening and covers an upper surface of the channel region. A second dielectric layer lines the first opening over the bio-sensing layer. A second opening within the first opening extends to the bio-sensing layer, through a region of the second dielectric layer overlying the channel region. A method for manufacturing the bio-sensing semiconductor structure is also provided.
    Type: Application
    Filed: February 20, 2017
    Publication date: June 8, 2017
    Inventors: Che-Ming Chang, Chih-Jen Chan, Chung-Yen Chou, Lee-Chuan Tseng, Shih-Wei Lin, Yuan-Chih Hsieh
  • Patent number: 9637378
    Abstract: The present disclosure relates to a method of gettering that provides for a high efficiency gettering process by increasing an area in which a getter layer is deposited, and an associated apparatus. In some embodiments, the method is performed by providing a substrate into a processing chamber having one or more residual gases. A cavity is formed within a top surface of the substrate. The cavity has a bottom surface and sidewalls extending from the bottom surface to the top surface. A getter layer, which absorbs the one or more residual gases, is deposited over the substrate at a position extending from the bottom surface of the cavity to a location on the sidewalls. By depositing the getter layer to extend to a location on the sidewalls of the cavity, the area of the substrate that is able to absorb the one or more residual gases is increased.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: May 2, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Jen Chan, Lee-Chuan Tseng, Shih-Wei Lin, Che-Ming Chang, Chung-Yen Chou, Yuan-Chih Hsieh
  • Patent number: 9606081
    Abstract: A bio-sensing semiconductor structure is provided. A transistor includes a channel region and a gate underlying the channel region. A first dielectric layer overlies the transistor. A first opening extends through the first dielectric layer to expose the channel region. A bio-sensing layer lines the first opening and covers an upper surface of the channel region. A second dielectric layer lines the first opening over the bio-sensing layer. A second opening within the first opening extends to the bio-sensing layer, through a region of the second dielectric layer overlying the channel region. A method for manufacturing the bio-sensing semiconductor structure is also provided.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: March 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Ming Chang, Chih-Jen Chan, Chung-Yen Chou, Lee-Chuan Tseng, Shih-Wei Lin, Yuan-Chih Hsieh
  • Patent number: 9517927
    Abstract: A method of fabricating MEMS device includes forming a plurality of rounded edge trenches on a sacrificial layer over a carrier substrate. Then, formation of a polycrystalline silicon layer over the sacrificial layer to fill the trenches. A plurality of stoppers is defined by the trenches and protrudes from the polycrystalline silicon layer toward the carrier substrate Subsequently, a portion of the sacrificial layer is removed to define a recess between the polycrystalline silicon layer and a carrier substrate and expose the stoppers.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: December 13, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Jen Chan, Chang-Ming Wu
  • Publication number: 20160318757
    Abstract: A method of forming an IC (integrated circuit) device is provided. The method includes receiving a first wafer including a first substrate and including a plasma-reflecting layer disposed on an upper surface thereof. The plasma-reflecting layer is configured to reflect a plasma therefrom. A dielectric protection layer is formed on a lower surface of a second wafer, wherein the second wafer includes a second substrate. The second wafer is bonded to the first wafer, such that a cavity is formed between the plasma-reflecting layer and the dielectric protection layer. An etch process is performed with the plasma to form an opening extending from an upper surface of the second wafer and through the dielectric protection layer into the cavity. A resulting structure of the above method is also provided.
    Type: Application
    Filed: April 29, 2015
    Publication date: November 3, 2016
    Inventors: Chung-Yen Chou, Chih-Jen Chan, Chia-Shiung Tsai, Ru-Liang Lee, Yuan-Chih Hsieh
  • Publication number: 20160318754
    Abstract: A method of fabricating MEMS device includes forming a plurality of rounded edge trenches on a sacrificial layer over a carrier substrate. Then, formation of a polycrystalline silicon layer over the sacrificial layer to fill the trenches. A plurality of stoppers is defined by the trenches and protrudes from the polycrystalline silicon layer toward the carrier substrate Subsequently, a portion of the sacrificial layer is removed to define a recess between the polycrystalline silicon layer and a carrier substrate and expose the stoppers.
    Type: Application
    Filed: April 29, 2015
    Publication date: November 3, 2016
    Inventors: Chih-Jen CHAN, Chang-Ming WU
  • Publication number: 20160266063
    Abstract: A bio-sensing semiconductor structure is provided. A transistor includes a channel region and a gate underlying the channel region. A first dielectric layer overlies the transistor. A first opening extends through the first dielectric layer to expose the channel region. A bio-sensing layer lines the first opening and covers an upper surface of the channel region. A second dielectric layer lines the first opening over the bio-sensing layer. A second opening within the first opening extends to the bio-sensing layer, through a region of the second dielectric layer overlying the channel region. A method for manufacturing the bio-sensing semiconductor structure is also provided.
    Type: Application
    Filed: March 12, 2015
    Publication date: September 15, 2016
    Inventors: Che-Ming Chang, Chih-Jen Chan, Chung-Yen Chou, Lee-Chuan Tseng, Shih-Wei Lin, Yuan-Chih Hsieh
  • Patent number: 9434076
    Abstract: The present disclosure relates to a wafer transfer robot having a robot blade that can be used to handle substrates that are patterned on both sides without causing warpage of the substrates. In some embodiments, the wafer transfer robot has a robot blade coupled to a transfer arm that varies a position of the robot blade. The robot blade has a wafer reception area that receives a substrate. Two or more spatially distinct contact points are located at positions along a perimeter of the wafer reception area that provide support to opposing edges of the substrate. The two or more contact points are separated by a cavity in the robot blade. The cavity mitigates contact between a backside of the substrate and the robot blade, while providing support to opposing sides of the substrate to prevent warpage of the substrate.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: September 6, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Lee-Chuan Tseng, Chih-Jen Chan, Shih-Wei Lin, Che-Ming Chang, Chung-Yen Chou, Yuan-Chih Hsieh
  • Publication number: 20160101976
    Abstract: In some embodiments, the present disclosure relates to a MEMs (micro-electromechanical system) package device having a getter layer. The MEMs package includes a first substrate having a cavity located within an upper surface of the first substrate. The cavity has roughened interior surfaces. A getter layer is arranged onto the roughened interior surfaces of the cavity. A bonding layer is arranged on the upper surface of the first substrate on opposing sides of the cavity, and a second substrate bonded to the first substrate by the bonding layer. The second substrate is arranged over the cavity. The roughened interior surfaces of the cavity enables more effective absorption of residual gases, thereby increasing the efficiency of a gettering process.
    Type: Application
    Filed: December 14, 2015
    Publication date: April 14, 2016
    Inventors: Yuan-Chih Hsieh, Li-Cheng Chu, Hung-Hua Lin, Chih-Jen Chan, Lan-Lin Chao
  • Patent number: 9242853
    Abstract: The present disclosure relates to a method of gettering that provides for a high efficiency gettering process by depositing a gettering material on a roughened substrate surface, and an associated apparatus. In some embodiments, the method is performed by providing a substrate into a processing chamber having residual gases. One or more cavities are formed in the substrate at locations between bonding areas on a top surface of the substrate. Respective cavities have roughened interior surfaces that vary in a plurality of directions. A getter layer is deposited into the one or more cavities. The roughened interior surfaces of the one or more cavities enable the substrate to more effectively absorb the residual gases, thereby increasing the efficiency of the gettering process.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: January 26, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yuan-Chih Hsieh, Li-Cheng Chu, Hung-Hua Lin, Chih-Jen Chan, Lan-Lin Chao
  • Patent number: 9224615
    Abstract: A method of etching a trench in a substrate is provided. The method repeatedly alternates between using a fluorine-based plasma to etch a trench, which has trench sidewalls, into a selected region of the substrate; and using a fluorocarbon plasma to deposit a liner on the trench sidewalls. The liner, when formed and subsequently etched, has an exposed sidewall surface that includes scalloped recesses. The trench, which includes the scalloped recesses, is then bombarded with a molecular beam where the molecules are directed on an axis parallel to the trench sidewalls to reduce the scalloped recesses.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: December 29, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Ming Chang, Lee-Chuan Tseng, Shih-Wei Lin, Chih-Jen Chan, Yuan-Chih Hsieh, Ming Chyi Liu, Chung-Yen Chou
  • Publication number: 20150102432
    Abstract: The present disclosure relates to a method of gettering that provides for a high efficiency gettering process by depositing a gettering material on a roughened substrate surface, and an associated apparatus. In some embodiments, the method is performed by providing a substrate into a processing chamber having residual gases. One or more cavities are formed in the substrate at locations between bonding areas on a top surface of the substrate. Respective cavities have roughened interior surfaces that vary in a plurality of directions. A getter layer is deposited into the one or more cavities. The roughened interior surfaces of the one or more cavities enable the substrate to more effectively absorb the residual gases, thereby increasing the efficiency of the gettering process.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 16, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yuan-Chih Hsieh, Li-cheng Chu, Hung-Hua Lin, Chih-Jen Chan, Lan-Lin Chao
  • Publication number: 20150069581
    Abstract: A method of etching a trench in a substrate is provided. The method repeatedly alternates between using a fluorine-based plasma to etch a trench, which has trench sidewalls, into a selected region of the substrate; and using a fluorocarbon plasma to deposit a liner on the trench sidewalls. The liner, when formed and subsequently etched, has an exposed sidewall surface that includes scalloped recesses. The trench, which includes the scalloped recesses, is then bombarded with a molecular beam where the molecules are directed on an axis parallel to the trench sidewalls to reduce the scalloped recesses.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Ming Chang, Lee-Chuan Tseng, Shih-Wei Lin, Chih-Jen Chan, Yuan-Chih Hsieh, Ming Chyi Liu, Chung-Yen Chou