Patents by Inventor CHIH-MING CHUANG
CHIH-MING CHUANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11254069Abstract: A composite material body (10) includes a first material layer (20) and a second material layer (30) overlapping the first material layer (20). The first material layer (20) and the second material layer (30) are wound to form a flexible and circular rod. Impact absorption is effectively improved and impact resisting strength is enhanced because energy-absorber or damping material or its composition is attached into the composite material body (10). Technical characteristics, effects and objects of this invention are achieved thereby.Type: GrantFiled: May 24, 2021Date of Patent: February 22, 2022Assignees: Topkey Corporation, Xiamen Keentech Composite Technology Co., Ltd.Inventors: Chih-Ming Chuang, Wan-Ting Chung, Yen-Ta Lu
-
Patent number: 11247412Abstract: A composite material body (10) includes a first material layer (20) and a second material layer (30) overlapping the first material layer (20). The first material layer (20) and the second material layer (30) are wound to form a flexible and circular rod. Impact absorption is effectively improved and impact resisting strength is enhanced because energy-absorber or damping material or its composition is attached into the composite material body (10). Technical characteristics, effects and objects of this invention are achieved thereby.Type: GrantFiled: May 24, 2021Date of Patent: February 15, 2022Assignees: Topkey Corporation, Xiamen Keentech Composite Technology Co., Ltd.Inventors: Chih-Ming Chuang, Wan-Ting Chung, Yen-Ta Lu
-
Publication number: 20210276277Abstract: A composite material body (10) includes a first material layer (20) and a second material layer (30) overlapping the first material layer (20). The first material layer (20) and the second material layer (30) are wound to form a flexible and circular rod. Impact absorption is effectively improved and impact resisting strength is enhanced because energy-absorber or damping material or its composition is attached into the composite material body (10). Technical characteristics, effects and objects of this invention are achieved thereby.Type: ApplicationFiled: May 24, 2021Publication date: September 9, 2021Applicants: TOPKEY CORPORATION, XIAMEN KEENTECH COMPOSITE TECHNOLOGY CO., LTD.Inventors: Chih-Ming CHUANG, Wan-Ting CHUNG, Yen-Ta LU
-
Publication number: 20210276278Abstract: A composite material body (10) includes a first material layer (20) and a second material layer (30) overlapping the first material layer (20). The first material layer (20) and the second material layer (30) are wound to form a flexible and circular rod. Impact absorption is effectively improved and impact resisting strength is enhanced because energy-absorber or damping material or its composition is attached into the composite material body (10). Technical characteristics, effects and objects of this invention are achieved thereby.Type: ApplicationFiled: May 24, 2021Publication date: September 9, 2021Applicants: TOPKEY CORPORATION, XIAMEN KEENTECH COMPOSITE TECHNOLOGY CO., LTD.Inventors: Chih-Ming CHUANG, Wan-Ting CHUNG, Yen-Ta LU
-
Patent number: 11046022Abstract: A composite material body (10) includes a first material layer (20) and a second material layer (30) overlapping the first material layer (20). The first material layer (20) and the second material layer (30) are wound to form a flexible and circular rod. Impact absorption is effectively improved and impact resisting strength is enhanced because energy-absorber or damping material or its composition is attached into the composite material body (10). Technical characteristics, effects and objects of this invention are achieved thereby.Type: GrantFiled: September 20, 2018Date of Patent: June 29, 2021Assignees: Topkey Corporation, Xiamen Keentech Composite Technology Co., Ltd.Inventors: Chih-Ming Chuang, Wan-Ting Chung, Yen-Ta Lu
-
Publication number: 20190091943Abstract: A composite material body (10) includes a first material layer (20) and a second material layer (30) overlapping the first material layer (20). The first material layer (20) and the second material layer (30) are wound to form a flexible and circular rod. Impact absorption is effectively improved and impact resisting strength is enhanced because energy-absorber or damping material or its composition is attached into the composite material body (10). Technical characteristics, effects and objects of this invention are achieved thereby.Type: ApplicationFiled: September 20, 2018Publication date: March 28, 2019Inventors: Chih-Ming CHUANG, Wan-Ting CHUNG, Yen-Ta LU
-
Patent number: 9979032Abstract: A treatment method for solid oxide fuel cells includes: measuring a radius of curvature of a cell; measuring a surface resistance of cathode current collecting layer of a cell; performing an alcohol permeating test of a cell; performing simultaneously several stages of compression and heating or cooling to a cell; an apparatus for completing above stages is also disclosed.Type: GrantFiled: October 15, 2015Date of Patent: May 22, 2018Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH ATOMIC ENERGY COUNCIL, EXECUTIVE YUANInventors: Chang-Sing Hwang, Chun-Liang Chang, Chun-Huang Tsai, Sheng-Huei Nian, Chih-Ming Chuang, Shih-Wei Cheng
-
Patent number: 9496559Abstract: A nanostructured anode of solid oxide fuel cell with high stability and high efficiency and a method for manufacturing the same are revealed. This anode comprising a porous permeable metal substrate, a diffusion barrier layer and a nano-composite film is formed by atmospheric plasma spray. The nano-composite film includes a plurality of metal nanoparticles, a plurality of metal oxide nanoparticles, and a plurality of gas pores that are connected to form nano gas channels. The metal nanoparticles are connected to form a 3-dimensional network that conducts electrons, while the metal oxide nanoparticles are connected to form a 3-dimensional network that conducts oxygen ions. The network formed by metal oxide nanoparticles has certain strength to separate metal nanoparticles and prevent aggregation or agglomeration of the metal nanoparticles. Thus this anode can be applied to a solid oxide fuel cell operating in the intermediate temperatures (600˜800° C.) with high stability and high efficiency.Type: GrantFiled: October 5, 2015Date of Patent: November 15, 2016Assignee: Atomic Energy Council-Institute of Nuclear Energy ResearchInventors: Chang-Sing Hwang, Chun-Liang Chang, Chih-Ming Chuang, Chun-Huang Tsai, Sheng-Hui Nien, Shih-Wei Cheng
-
Publication number: 20160036069Abstract: A treatment method for solid oxide fuel cells includes: measuring a radius of curvature of a cell; measuring a surface resistance of cathode current collecting layer of a cell; performing an alcohol permeating test of a cell; performing simultaneously several stages of compression and heating or cooling to a cell; an apparatus for completing above stages is also disclosed.Type: ApplicationFiled: October 15, 2015Publication date: February 4, 2016Inventors: CHANG-SING HWANG, CHUN-LIANG CHANG, CHUN-HUANG TSAI, SHENG-HUEI NIAN, CHIH-MING CHUANG, SHIH-WEI CHENG
-
Publication number: 20160028091Abstract: A nanostructured anode of solid oxide fuel cell with high stability and high efficiency and a method for manufacturing the same are revealed. This anode comprising a porous permeable metal substrate, a diffusion barrier layer and a nano-composite film is formed by atmospheric plasma spray. The nano-composite film includes a plurality of metal nanoparticles, a plurality of metal oxide nanoparticles, and a plurality of gas pores that are connected to form nano gas channels. The metal nanoparticles are connected to form a 3-dimensional network that conducts electrons, while the metal oxide nanoparticles are connected to form a 3-dimensional network that conducts oxygen ions. The network formed by metal oxide nanoparticles has certain strength to separate metal nanoparticles and prevent aggregation or agglomeration of the metal nanoparticles. Thus this anode can be applied to a solid oxide fuel cell operating in the intermediate temperatures (600˜800° C.) with high stability and high efficiency.Type: ApplicationFiled: October 5, 2015Publication date: January 28, 2016Inventors: CHANG-SING HWANG, CHUN-LIANG CHANG, CHIH-MING CHUANG, CHUN-HUANG TSAI, SHENG-HUI NIEN, SHIH-WEI CHENG
-
Patent number: 9190688Abstract: A treatment method for solid oxide fuel cells includes: measuring a radius of curvature of a cell; measuring a surface resistance of cathode current collecting layer of a cell; performing an alcohol permeating test of a cell; performing simultaneously several stages of compression and heating or cooling to a cell; an apparatus for completing above stages is also disclosed.Type: GrantFiled: March 18, 2013Date of Patent: November 17, 2015Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH ATOMIC ENERGY COUNCIL, EXECUTIVE YUANInventors: Chang-Sing Hwang, Chun-Liang Chang, Chun-Huang Tsai, Sheng-Huei Nian, Chih-Ming Chuang, Shih-Wei Cheng
-
Patent number: 9174841Abstract: A nanostructured anode of solid oxide fuel cell with high stability and high efficiency and a method for manufacturing the same are revealed. This anode comprising a porous permeable metal substrate, a diffusion barrier layer and a nano-composite film is formed by atmospheric plasma spray. The nano-composite film includes a plurality of metal nanoparticles, a plurality of metal oxide nanoparticles, and a plurality of gas pores that are connected to form nano gas channels. The metal nanoparticles are connected to form a 3-dimensional network that conducts electrons, while the metal oxide nanoparticles are connected to form a 3-dimensional network that conducts oxygen ions. The network formed by metal oxide nanoparticles has certain strength to separate metal nanoparticles and prevent aggregation or agglomeration of the metal nanoparticles. Thus this anode can be applied to a solid oxide fuel cell operating in the intermediate temperatures (600˜800° C.) with high stability and high efficiency.Type: GrantFiled: August 7, 2012Date of Patent: November 3, 2015Assignee: Atomic Energy Council—Institute of Nuclear Energy ResearchInventors: Chang-Sing Hwang, Chun-Liang Chang, Chih-Ming Chuang, Chun-Huang Tsai, Sheng-Hui Nien, Shih-Wei Cheng
-
Publication number: 20140045099Abstract: A nanostructured anode of solid oxide fuel cell with high stability and high efficiency and a method for manufacturing the same are revealed. This anode comprising a porous permeable metal substrate, a diffusion barrier layer and a nano-composite film is formed by atmospheric plasma spray. The nano-composite film includes a plurality of metal nanoparticles, a plurality of metal oxide nanoparticles, and a plurality of gas pores that are connected to form nano gas channels. The metal nanoparticles are connected to form a 3-dimensional network that conducts electrons, while the metal oxide nanoparticles are connected to form a 3-dimensional network that conducts oxygen ions. The network formed by metal oxide nanoparticles has certain strength to separate metal nanoparticles and prevent aggregation or agglomeration of the metal nanoparticles. Thus this anode can be applied to a solid oxide fuel cell operating in the intermediate temperatures (600˜800° C.) with high stability and high efficiency.Type: ApplicationFiled: August 7, 2012Publication date: February 13, 2014Applicant: ATOMIC ENERGY COUNCIL - INSTITUTE OF NUCLEAR ENERGY RESEARCHInventors: CHANG-SING HWANG, CHUN-LIANG CHANG, CHIH-MING CHUANG, CHUN-HUANG TSAI, SHENG-HUI NIEN, SHIH-WEI CHENG