Patents by Inventor Chih-Ting Lin

Chih-Ting Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250103751
    Abstract: A computing circuit with a de-identified architecture, a data computing method, a data processing system, and a data de-identification method are provided. The computing circuit includes an arithmetic array and a de-identification circuit. The computing circuit may perform an accumulation operation on input data to generate accumulated data by the arithmetic array. The de-identification circuit has an analog offset error determined based on an analog physical unclonable function. The computing circuit may operate the accumulated data according to the analog offset error to generate de-identification data by the de-identification circuit. It can not only provide the analog offset error through the transistors in the de-identification circuit, but also be combined with obfuscated code settings to dynamically adjusting the degree of de-identification of data.
    Type: Application
    Filed: September 26, 2024
    Publication date: March 27, 2025
    Applicant: Industrial Technology Research Institute
    Inventors: Bo-Cheng Chiou, Chih-Sheng Lin, Tuo-Hung Hou, Chih-Ming Lai, Yun-Ting Ho, Shan-Ming Chang
  • Publication number: 20250107207
    Abstract: A semiconductor structure includes a semiconductor substrate; fin active regions protruded above the semiconductor substrate; and a gate stack disposed on the fin active regions; wherein the gate stack includes a high-k dielectric material layer, and various metal layers disposed on the high-k dielectric material layer. The gate stack has an uneven profile in a sectional view with a first dimension D1 at a top surface, a second dimension D2 at a bottom surface, and a third dimension D3 at a location between the top surface and the bottom surface, and wherein each of D1 and D2 is greater than D3.
    Type: Application
    Filed: December 9, 2024
    Publication date: March 27, 2025
    Inventors: Chi-Sheng LAI, Wei-Chung SUN, Yu-Bey WU, Yuan-Ching PENG, Yu-Shan LU, Li-Ting CHEN, Shih-Yao LIN, Yu-Fan PENG, Kuei-Yu KAO, Chih-Han LIN, Jing Yi YAN, Pei-Yi LIU
  • Patent number: 12261086
    Abstract: A method for fabricating a semiconductor device includes first providing a substrate having a high-voltage (HV) region, a medium-voltage (MV) region, and a low-voltage (LV) region, forming a HV device on the HV region, and forming a LV device on the LV region. Preferably, the HV device includes a first base on the substrate, a first gate dielectric layer on the first base, and a first gate electrode on the first gate dielectric layer. The LV device includes a fin-shaped structure on the substrate, and a second gate electrode on the fin-shaped structure, in which a top surface of the first gate dielectric layer is even with a top surface of the fin-shaped structure.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: March 25, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Yu-Hsiang Lin, Chien-Ting Lin, Chun-Ya Chiu, Chia-Jung Hsu, Chin-Hung Chen
  • Patent number: 12261088
    Abstract: A package structure includes a die, an encapsulation layer, a redistribution layer structure and an adhesive material. The die includes a semiconductor substrate, conductive pads disposed over the semiconductor substrate and a passivation layer disposed over the semiconductor substrate and around the conductive pads. The encapsulation layer laterally encapsulates the die. the redistribution layer structure is disposed on the die and the encapsulation layer, and includes at least one redistribution layer embedded in at least one polymer layer, and the polymer layer contacts a portion of the passivation layer. The adhesive material is disposed on the die and covers an interface between the polymer layer and the passivation layer.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: March 25, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Jui Yu, Hao-Jan Pei, Cheng-Ting Chen, Chih-Chiang Tsao, Hsiu-Jen Lin, Ching-Hua Hsieh
  • Patent number: 12261610
    Abstract: A frequency locked loop circuit, comprising an operational circuit, a first impedance circuit, a second impedance circuit, a switching circuit and a frequency generation circuit. The operational circuit is configured to output an operational signal according to a voltage difference between a positive terminal and a negative terminal. The switching circuit is configured to periodically conduct the negative terminal to one of the first impedance node and the second impedance node, and periodically conduct the positive terminal to the other one of the first impedance node and the second impedance node. The frequency generation circuit is configured to periodically sample the operational signal to generate a sample signal to generate a clock signal. An operational frequency of the operational signal is an integer multiple of a sampling frequency of the frequency generation circuit.
    Type: Grant
    Filed: October 29, 2023
    Date of Patent: March 25, 2025
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Chin-Tung Chan, Yan-Ting Wang, Ren-Hong Luo, Chih-Wen Chen, Hao-Che Hsu, Li-Wei Lin
  • Publication number: 20250089295
    Abstract: A nano-FET and a method of forming is provided. In some embodiments, a nano-FET includes an epitaxial source/drain region contacting ends of a first nanostructure and a second nanostructure. The epitaxial source/drain region may include a first semiconductor material layer of a first semiconductor material, such that the first semiconductor material layer includes a first segment contacting the first nanostructure and a second segment contacting the second nanostructure, wherein the first segment is separated from the second segment. A second semiconductor material layer is formed over the first segment and the second segment. The second semiconductor material layer may include a second semiconductor material having a higher concentration of dopants of a first conductivity type than the first semiconductor material layer. The second semiconductor material layer may have a lower concentration percentage of silicon than the first semiconductor material layer.
    Type: Application
    Filed: November 22, 2024
    Publication date: March 13, 2025
    Inventors: Yan-Ting Lin, Yen-Ru Lee, Chien-Chang Su, Chih-Yun Chin, Chien-Wei Lee, Pang-Yen Tsai, Chii-Horng Li, Yee-Chia Yeo
  • Patent number: 12248019
    Abstract: A diode test module and method applicable to the diode test module are provided. A substrate having first conductivity type and an epitaxial layer having second conductivity type on the substrate are formed. A well region having first conductivity type is formed in the epitaxial layer. A first and second heavily doped region having second conductivity type are theoretically formed in the well and connected to a first and second I/O terminal, respectively. Isolation trench is formed there in between for electrical isolation. A monitor cell comprising a third and fourth heavily doped region is provided in a current conduction path between the first and second I/O terminal when inputting an operation voltage. By employing the monitor cell, the invention achieves to determine if the well region is missing by measuring whether a leakage current is generated without additional testing equipment and time for conventional capacitance measurements.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: March 11, 2025
    Assignee: AMAZING MICROELECTRONIC CORP.
    Inventors: Chih-Ting Yeh, Sung Chih Huang, Kun-Hsien Lin, Che-Hao Chuang
  • Patent number: 12249649
    Abstract: A semiconductor device includes a fin-shaped structure on the substrate, a shallow trench isolation (STI) around the fin-shaped structure, a single diffusion break (SDB) structure in the fin-shaped structure for dividing the fin-shaped structure into a first portion and a second portion; a first gate structure on the fin-shaped structure, a second gate structure on the STI, and a third gate structure on the SDB structure. Preferably, a width of the third gate structure is greater than a width of the second gate structure and each of the first gate structure, the second gate structure, and the third gate structure includes a U-shaped high-k dielectric layer, a U-shaped work function metal layer, and a low-resistance metal layer.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: March 11, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Cheng-Han Wu, Hsin-Yu Chen, Chun-Hao Lin, Shou-Wei Hsieh, Chih-Ming Su, Yi-Ren Chen, Yuan-Ting Chuang
  • Publication number: 20250074776
    Abstract: The present invention provides a method for preparing an activated carbon, which includes impregnating a carbonaceous material with carbonated water; and exposing the carbonaceous material to microwave radiation to produce the activated carbon.
    Type: Application
    Filed: September 1, 2023
    Publication date: March 6, 2025
    Inventors: Feng-Huei LIN, Chih-Chieh CHEN, Chih-Wei LIN, Chi-Hsien CHEN, Yue-Liang GUO, Ching-Yun CHEN, Chia-Ting CHANG, Che-Yung KUAN, Zhi-Yu CHEN, I-Hsuan YANG
  • Publication number: 20250076245
    Abstract: A method and system for establishing a model for sensing ions in a solution, and a method and system for sensing ions in a solution apply an ion-sensitive field effect transistor in a machine learning model for ion detection in training solutions. The method for establishing a model includes adjusting environmental parameters, where the environmental parameters are selected from any one of multiple target temperatures or from any one of multiple external electric fields; establishing at least one virtual sensor based on the biasing relationship of the multi-gate ion sensitive field effect transistor; obtaining, by the at least one virtual sensor, multiple training features of the training solution based on the environmental parameters and bias parameters; and loading, by a computer, the environmental parameters and the training features into a machine learning model to establish an ion detection model, which is used to sense the types and concentrations of ions.
    Type: Application
    Filed: November 9, 2023
    Publication date: March 6, 2025
    Inventors: Chih-Ting Lin, Yi-Ting Wu, Sheng-Yu Chen, Wei-En Hsu
  • Publication number: 20250081632
    Abstract: A solar cell module includes a first substrate, a second substrate, at least one cell unit, a first packaging film, a second packaging film, a first protective layer, a second protective layer, and a plurality of support members. The first substrate and the second substrate are disposed opposite to each other. The cell unit is disposed between the first substrate and the second substrate. The first packaging film is disposed between the cell unit and the first substrate. The second packaging film is disposed between the cell unit and the second substrate. The first protective layer is disposed between the cell unit and the first packaging film. The second protective layer is disposed between the cell unit and the second packaging film. The support members are respectively disposed between the first packaging film and the second packaging film and surround at least two opposite sides of the cell unit.
    Type: Application
    Filed: August 29, 2024
    Publication date: March 6, 2025
    Applicant: Industrial Technology Research Institute
    Inventors: Hsin-Chung Wu, Chun-Wei Su, Tzu-Ting Lin, En-Yu Pan, Yu-Tsung Chiu, Chih-Lung Lin, Teng-Yu Wang, Chiou-Chu Lai, Ying-Jung Chiang
  • Publication number: 20250081529
    Abstract: Embodiments with present disclosure provides a gate-all-around FET device including extended bottom inner spacers. The extended bottom inner prevents the subsequently formed epitaxial source/drain region from volume loss and induces compressive strain in the channel region to prevent strain loss and channel resistance degradation.
    Type: Application
    Filed: March 1, 2024
    Publication date: March 6, 2025
    Inventors: Chien-Chia CHENG, Chih-Chiang CHANG, Ming-Hua YU, Chii-Horng LI, Chung-Ting KO, Sung-En LIN, Chih-Shan CHEN, De-Fang CHEN
  • Patent number: 12243929
    Abstract: A dummy gate structure may be formed for a semiconductor device. The dummy gate structure may be formed from an amorphous polysilicon layer. The amorphous polysilicon layer may be deposited in a blanket deposition operation. An annealing operation is performed for the semiconductor device to remove voids, seams, and/or other defects from the amorphous polysilicon layer. The annealing operation may cause the amorphous polysilicon layer to crystallize, thereby resulting in the amorphous polysilicon layer transitioning into a crystallized polysilicon layer. A dual radio frequency (RF) source etch technique may be performed to increase the directionality of ions and radicals in a plasma that is used to etch the crystallized polysilicon layer to form the dummy gate structure. The increased directionality of the ions increases the effectiveness of the ions in etching through the different crystal grain boundaries which increases the etch rate uniformity across the crystallized polysilicon layer.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: March 4, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yan-Ting Shen, Yu-Li Lin, Jui Fu Hsieh, Chih-Teng Liao
  • Patent number: 12243762
    Abstract: A door locking mechanism and semiconductor container using the same include door panel, cover, and locking module. The door panel has a first stop structure. The cover and the door panel define an accommodating space for receiving the locking module. The locking module includes rotating member, holding member, and elastic member. The elastic member is disposed on the holding member and has a second stop structure near the first stop structure. The elastic member is disposed between the holding and the rotating member. The elastic member is compressed when a force is applied to the holding member, and the second stop structure detaches from a limitation state with the first stop structure for allowing a rotating operation of the rotating member. The elastic member elastically restores when the force is removed, and the second stop structure returns to the limitation state for limiting the rotating operation.
    Type: Grant
    Filed: April 12, 2023
    Date of Patent: March 4, 2025
    Assignee: Gudeng Precision Industrial Co., LTD
    Inventors: Ming-Chien Chiu, Yung-Chin Pan, Cheng-En Chung, Chih-Ming Lin, Po-Ting Lee, Wei-Chien Liu, Tzu-Ning Huang
  • Patent number: 12237218
    Abstract: A method of fabricating a contact structure includes the following steps. An opening is formed in a dielectric layer. A conductive material layer is formed within the opening and on the dielectric layer, wherein the conductive material layer includes a bottom section having a first thickness and a top section having a second thickness, the second thickness is greater than the first thickness. A first treatment is performed on the conductive material layer to form a first oxide layer on the bottom section and on the top section of the conductive material layer. A second treatment is performed to remove at least portions of the first oxide layer and at least portions of the conductive material layer, wherein after performing the second treatment, the bottom section and the top section of the conductive material layer have substantially equal thickness.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: February 25, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chang-Ting Chung, Shih-Wei Yeh, Kai-Chieh Yang, Yu-Ting Wen, Yu-Chen Ko, Ya-Yi Cheng, Min-Hsiu Hung, Chun-Hsien Huang, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
  • Publication number: 20250056851
    Abstract: A semiconductor device includes a first channel region, a second channel region, and a first insulating fin, the first insulating fin being interposed between the first channel region and the second channel region. The first insulating fin includes a lower portion and an upper portion. The lower portion includes a fill material. The upper portion includes a first dielectric layer on the lower portion, the first dielectric layer being a first dielectric material, a first capping layer on the first dielectric layer, the first capping layer being a second dielectric material, the second dielectric material being different than the first dielectric material, and a second dielectric layer on the first capping layer, the second dielectric layer being the first dielectric material.
    Type: Application
    Filed: October 28, 2024
    Publication date: February 13, 2025
    Inventors: Jen-Hong Chang, Yi-Hsiu Liu, You-Ting Lin, Chih-Chung Chang, Kuo-Yi Chao, Jiun-Ming Kuo, Yuan-Ching Peng, Sung-En Lin, Chia-Cheng Chao, Chung-Ting Ko
  • Publication number: 20250054786
    Abstract: A die bonding tool includes a bond head having a moveable component. The moveable component may be moveable between an extended position in which a lower surface of the moveable component protrudes below a lower surface of the bond head and a retracted position in which the lower surface of the moveable component does not protrude below the lower surface of the bond head. The moveable component may be used to control a shape of a semiconductor die secured to the lower surface of the bond head during a process of bonding the semiconductor die to a substrate. Accordingly, void areas and other bonding defects may be avoided and the bond formed between the semiconductor die and the target substrate may be improved.
    Type: Application
    Filed: August 7, 2023
    Publication date: February 13, 2025
    Inventors: Chih-Yuan Chiu, Chi-Chun Peng, Yu-Hong Du, Hui-Ting Lin, Jen-Hao Liu, Amram Eitan
  • Publication number: 20250038106
    Abstract: A bond structure is provided. The bond structure includes a seed layer and a conductive structure. The conductive structure includes a via portion over the seed layer and a plurality of wires protruding from the via portion.
    Type: Application
    Filed: July 28, 2023
    Publication date: January 30, 2025
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Chun-Wei CHIANG, Yung-Sheng LIN, I-Ting LIN, Ping-Hung HSIEH, Chih-Yuan HSU
  • Patent number: 12211751
    Abstract: A semiconductor device includes a single diffusion break (SDB) structure dividing a fin-shaped structure into a first portion and a second portion, an isolation structure on the SDB structure, a first spacer adjacent to the isolation structure, a metal gate adjacent to the isolation structure, a shallow trench isolation (STI around the fin-shaped structure, and a second isolation structure on the STI. Preferably, a top surface of the first spacer is lower than a top surface of the isolation structure and a bottom surface of the first spacer is lower than a bottom surface of the metal gate.
    Type: Grant
    Filed: December 28, 2023
    Date of Patent: January 28, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chun-Ya Chiu, Chi-Ting Wu, Chin-Hung Chen, Yu-Hsiang Lin
  • Patent number: 12204163
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: February 5, 2024
    Date of Patent: January 21, 2025
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu