Patents by Inventor Chih-Wen Liu

Chih-Wen Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240367202
    Abstract: A process tool including a polishing pad on a top surface of a wafer platen. A wafer carrier is configured to hold a wafer over the polishing pad. A slurry dispenser is configured to dispense an abrasive slurry including a plurality of charged abrasive particles having a first polarity onto the polishing pad. A first conductive rod is within the wafer platen and coupled to a first voltage supply. A wafer roller is configured to support the wafer. A first wafer brush is arranged beside the wafer roller. A second conductive rod is within the first wafer brush and coupled to a second voltage supply. The first voltage supply is configured to apply a first charge having a second polarity, opposite the first polarity, to the first conductive rod. The second voltage supply is configured to apply a second charge having the second polarity to the second conductive rod.
    Type: Application
    Filed: July 19, 2024
    Publication date: November 7, 2024
    Inventors: Chih-Wen Liu, Yeo-Sin Lin, Shu-Wei Hsu, Che-Hao Tu, Hui-Chi Huang, Kei-Wei Chen
  • Patent number: 12128455
    Abstract: A method comprising: providing a slurry to a polishing pad that is disposed on a wafer platen, the slurry comprising a plurality of electrically charged abrasive particles having a first electrical polarity; moving a first side of a wafer into contact with the slurry and the polishing pad; applying a first electrical charge having a second electrical polarity, opposite the first electrical polarity, to a first conductive rod; moving the first side of the wafer away from the polishing pad while the first electrical charge is applied to the first conductive rod; moving a first wafer brush into contact with the first side of the wafer; applying a second electrical charge having the second electrical polarity, opposite the first electrical polarity, to a second conductive rod arranged within the first wafer brush; and moving the first wafer brush away from the first side of the wafer.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: October 29, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wen Liu, Yeo-Sin Lin, Shu-Wei Hsu, Che-Hao Tu, Hui-Chi Huang, Kei-Wei Chen
  • Patent number: 12068196
    Abstract: The current disclosure provides a semiconductor fabrication method that defines the height of gate structures at the formation of the gate structure. A gate line-end region is formed by removing a portion of a gate structure. A resulted recess is filled with a dielectric material is chosen to have a material property suitable for a later contact formation process of forming a metal contact. A metal contact structure is formed through the recess filling dielectric layer to connect to a gate structure and/or a source/drain region.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: August 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Liang Chung, Che-Hao Tu, Kei-Wei Chen, Chih-Wen Liu, You-Shiang Lin, Yi-Ching Liang
  • Publication number: 20240217052
    Abstract: The present disclosure is directed to techniques of zone-based target control in chemical mechanical polishing of wafers. Multiple zones are identified on a surface of a wafer. The CMP target is achieved on each zone in a sequence of CMP processes. Each CMP process in the sequence achieves the CMP target for only one zone, using a CMP process selective to other zones.
    Type: Application
    Filed: March 11, 2024
    Publication date: July 4, 2024
    Inventors: Che-Liang CHUNG, Che-Hao TU, Kei-Wei CHEN, Chih-Wen LIU
  • Patent number: 11951587
    Abstract: The present disclosure is directed to techniques of zone-based target control in chemical mechanical polishing of wafers. Multiple zones are identified on a surface of a wafer. The CMP target is achieved on each zone in a sequence of CMP processes. Each CMP process in the sequence achieves the CMP target for only one zone, using a CMP process selective to other zones.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Liang Chung, Che-Hao Tu, Kei-Wei Chen, Chih-Wen Liu
  • Publication number: 20240050995
    Abstract: A process tool including a polishing pad on a top surface of a wafer platen. A wafer carrier is configured to hold a wafer over the polishing pad. A slurry dispenser is configured to dispense an abrasive slurry including a plurality of charged abrasive particles having a first polarity onto the polishing pad. A first conductive rod is within the wafer platen and coupled to a first voltage supply. A wafer roller is configured to support the wafer. A first wafer brush is arranged beside the wafer roller. A second conductive rod is within the first wafer brush and coupled to a second voltage supply. The first voltage supply is configured to apply a first charge having a second polarity, opposite the first polarity, to the first conductive rod. The second voltage supply is configured to apply a second charge having the second polarity to the second conductive rod.
    Type: Application
    Filed: August 15, 2022
    Publication date: February 15, 2024
    Inventors: Chih-Wen Liu, Yeo-Sin Lin, Shu-Wei Hsu, Che-Hao Tu, Hui-Chi Huang, Kei-Wei Chen
  • Publication number: 20210166972
    Abstract: The current disclosure provides a semiconductor fabrication method that defines the height of gate structures at the formation of the gate structure. A gate line-end region is formed by removing a portion of a gate structure. A resulted recess is filled with a dielectric material is chosen to have a material property suitable for a later contact formation process of forming a metal contact. A metal contact structure is formed through the recess filling dielectric layer to connect to a gate structure and/or a source/drain region.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: Che-Liang CHUNG, Che-Hao Tu, KEI-WEI CHEN, Chih-Wen Liu, You-Shiang Lin, Yi-Ching Liang
  • Patent number: 10943822
    Abstract: The current disclosure provides a semiconductor fabrication method that defines the height of gate structures at the formation of the gate structure. A gate line-end region is formed by removing a portion of a gate structure. A resulted recess is filled with a dielectric material is chosen to have a material property suitable for a later contact formation process of forming a metal contact. A metal contact structure is formed through the recess filling dielectric layer to connect to a gate structure and/or a source/drain region.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: March 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Liang Chung, Che-Hao Tu, Kei-Wei Chen, Chih-Wen Liu, You-Shiang Lin, Yi-Ching Liang
  • Publication number: 20210023678
    Abstract: A system controls a flow of a chemical mechanical polish (CMP) slurry into a chamber to form a slurry reservoir within the chamber. Once the slurry reservoir has been formed within the chamber, the system moves a polishing head to position and force a surface of a wafer that is attached to the polishing head into contact with a polishing pad attached to a platen within the chamber. A wafer/pad interface is formed at the surface of the wafer forced into contact with the polishing pad and the wafer/pad interface is disposed below an upper surface of the slurry reservoir. During CMP processing, the system controls one or more of a level, a force, and a rotation of the platen, a position, a force and a rotation of the polishing head to conduct the CMP processing of the surface of the wafer at the wafer/pad interface.
    Type: Application
    Filed: October 12, 2020
    Publication date: January 28, 2021
    Inventors: Chih-Wen Liu, Hao-Yun Cheng, Che-Hao Tu, Kei-Wei Chen
  • Patent number: 10800004
    Abstract: A system controls a flow of a chemical mechanical polish (CMP) slurry into a chamber to form a slurry reservoir within the chamber. Once the slurry reservoir has been formed within the chamber, the system moves a polishing head to position and force a surface of a wafer that is attached to the polishing head into contact with a polishing pad attached to a platen within the chamber. A wafer/pad interface is formed at the surface of the wafer forced into contact with the polishing pad and the wafer/pad interface is disposed below an upper surface of the slurry reservoir. During CMP processing, the system controls one or more of a level, a force, and a rotation of the platen, a position, a force and a rotation of the polishing head to conduct the CMP processing of the surface of the wafer at the wafer/pad interface.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: October 13, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wen Liu, Hao-Yun Cheng, Che-Hao Tu, Kei-Wei Chen
  • Publication number: 20200101582
    Abstract: A system controls a flow of a chemical mechanical polish (CMP) slurry into a chamber to form a slurry reservoir within the chamber. Once the slurry reservoir has been formed within the chamber, the system moves a polishing head to position and force a surface of a wafer that is attached to the polishing head into contact with a polishing pad attached to a platen within the chamber. A wafer/pad interface is formed at the surface of the wafer forced into contact with the polishing pad and the wafer/pad interface is disposed below an upper surface of the slurry reservoir. During CMP processing, the system controls one or more of a level, a force, and a rotation of the platen, a position, a force and a rotation of the polishing head to conduct the CMP processing of the surface of the wafer at the wafer/pad interface.
    Type: Application
    Filed: January 18, 2019
    Publication date: April 2, 2020
    Inventors: Chih-Wen Liu, Hao-Yun Cheng, Che-Hao Tu, Kei-Wei Chen
  • Publication number: 20200094369
    Abstract: The present disclosure is directed to techniques of zone-based target control in chemical mechanical polishing of wafers. Multiple zones are identified on a surface of a wafer. The CMP target is achieved on each zone in a sequence of CMP processes. Each CMP process in the sequence achieves the CMP target for only one zone, using a CMP process selective to other zones.
    Type: Application
    Filed: August 12, 2019
    Publication date: March 26, 2020
    Inventors: Che-Liang Chung, Che-Hao Tu, Kei-Wei Chen, Chih-Wen Liu
  • Publication number: 20190287852
    Abstract: The current disclosure provides a semiconductor fabrication method that defines the height of gate structures at the formation of the gate structure. A gate line-end region is formed by removing a portion of a gate structure. A resulted recess is filled with a dielectric material is chosen to have a material property suitable for a later contact formation process of forming a metal contact. A metal contact structure is formed through the recess filling dielectric layer to connect to a gate structure and/or a source/drain region.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 19, 2019
    Inventors: Che-Liang Chung, Che-Hao Tu, KEI-WEI CHEN, Chih-Wen Liu, You-Shiang Lin, Yi-Ching Liang
  • Patent number: 9941109
    Abstract: A method is presented that includes the step of polishing a wafer positioned on a platen. After polishing the wafer, the method includes initiating a high pressure rinse on the wafer while the wafer is positioned on the platen, wherein the high pressure rinse includes a hydrophilic solution. The wafer is soaked in the hydrophilic solution, and after soaking the wafer, the wafer is cleaned.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: April 10, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wen Liu, Che-Hao Tu, Po-Chin Nien, William Weilun Hong, Ying-Tsung Chen
  • Patent number: 9922837
    Abstract: A method includes measuring a topography of a wafer, determining that a first portion of the wafer has a greater thickness than a specified thickness. The method further includes, after measuring the wafer, performing a Chemical Mechanical Polishing (CMP) process to a first side of the wafer, and during application of the CMP process, applying additional pressure to a region of the wafer, the region comprising an asymmetric part of the wafer, the region including at least a part of the first portion of the wafer.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: March 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Wen Liu, Che-Hao Tu, Po-Chin Nien, William Weilun Hong, Ying-Tsung Chen
  • Publication number: 20180047662
    Abstract: A method of manufacturing an interposer substrate, including providing a carrier having a first circuit layer formed thereon, forming a plurality of conductive pillars on the first circuit layer, forming a first insulating layer on the carrier, with the conductive pillars being exposed from the first insulating layer, forming, on the conductive pillars a second circuit layer that is electrically connected to the conductive pillars, forming a second insulating layer on the second surface of the first insulating layer and the second circuit layer, exposing a portion of a surface of the second circuit layer from the second insulating layer, and removing the carrier. The invention further provides the interposer substrate as described above.
    Type: Application
    Filed: October 27, 2017
    Publication date: February 15, 2018
    Applicant: PHOENIX PIONEER TECHNOLOGY CO., LTD.
    Inventors: Che-Wei Hsu, Shih-Ping Hsu, Chih-Wen Liu
  • Publication number: 20180005840
    Abstract: A method is presented that includes the step of polishing a wafer positioned on a platen. After polishing the wafer, the method includes initiating a high pressure rinse on the wafer while the wafer is positioned on the platen, wherein the high pressure rinse includes a hydrophilic solution. The wafer is soaked in the hydrophilic solution, and after soaking the wafer, the wafer is cleaned.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 4, 2018
    Inventors: Chih-Wen Liu, Che-Hao Tu, Po-Chin Nien, William Weilun Hong, Ying-Tsung Chen
  • Patent number: 9831165
    Abstract: A method of manufacturing an interposer substrate, including providing a carrier having a first circuit layer formed thereon, forming a plurality of conductive pillars on the first circuit layer, forming a first insulating layer on the carrier, with the conductive pillars being exposed from the first insulating layer, forming on the conductive pillars a second circuit layer that is electrically connected to the conductive pillars, forming a second insulating layer on the second surface of the first insulating layer and the second circuit layer, exposing a portion of a surface of the second circuit layer from the second insulating layer, and removing the carrier. The invention further provides the interposer substrate as described above.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: November 28, 2017
    Assignee: PHOENIX PIONEER TECHNOLOGY CO., LTD.
    Inventors: Che-Wei Hsu, Shih-Ping Hsu, Chih-Wen Liu
  • Publication number: 20170256414
    Abstract: A method includes measuring a topography of a wafer, determining that a first portion of the wafer has a greater thickness than a specified thickness. The method further includes, after measuring the wafer, performing a Chemical Mechanical Polishing (CMP) process to a first side of the wafer, and during application of the CMP process, applying additional pressure to a region of the wafer, the region comprising an asymmetric part of the wafer, the region including at least a part of the first portion of the wafer.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 7, 2017
    Inventors: Chih-Wen Liu, Che-Hao Tu, Po-Chin Nien, William Weilun Hong, Ying-Tsung Chen
  • Publication number: 20160104652
    Abstract: A method for fabricating a package structure is provided, which includes the steps of: forming a wiring layer on a carrier by electroplating; disposing at least one electronic component on the wiring layer; forming on the carrier an insulating layer that encapsulates the wiring layer and the electronic component; and removing the carrier. With the single wiring layer having one surface electrically connected the at least one electronic component and the other surface electrically connected to a plurality of conductive elements, the package structure has a signal transmission path that is shortened.
    Type: Application
    Filed: April 13, 2015
    Publication date: April 14, 2016
    Inventors: Shih-Ping Hsu, Chih-Wen Liu, Tang-I Wu, Shu-Wei Hu