Patents by Inventor Chih-Wen Liu

Chih-Wen Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240143791
    Abstract: The invention introduces an apparatus for detecting errors during data encryption. The apparatus includes a search circuitry and a substitution check circuitry. The key generation circuitry is arranged operably to convert a first value of one byte corresponding to a plaintext, an intermediate encryption result, or a round key into a second value of a K-bit according to an 8-to-K lookup table, where K is an integer ranging from 10 to 15 and the second value comprises (K minus 8) bits of a Hamming parity. The substitution check circuitry is arranged operably to employ check formulae corresponding to the 8-to-K lookup table to determine whether an error is occurred during a conversion of the first value of the one byte into the second value of the K-bit, and output an error signal when finding the error, where a total amount of the formulae is K minus 8.
    Type: Application
    Filed: May 30, 2023
    Publication date: May 2, 2024
    Applicant: Silicon Motion, Inc.
    Inventors: Wun-Jhe WU, Po-Hung CHEN, Chiao-Wen CHENG, Jiun-Hung YU, Chih-Wei LIU
  • Publication number: 20240145398
    Abstract: A carrier structure is provided, in which at least one positioning area is defined on a chip-placement area of a package substrate, and at least one alignment portion is disposed on the positioning area. Therefore, the precision of manufacturing the alignment portion is improved by disposing the positioning area on the chip-placement area, such that the carrier structure can provide a better alignment mechanism for the chip placement operation.
    Type: Application
    Filed: December 8, 2022
    Publication date: May 2, 2024
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Cheng-Liang HSU, Wan-Rou CHEN, Hsin-Yin CHANG, Tsung-Li LIN, Hsiu-Jung LI, Chiu-Lien LI, Fu-Quan XU, Yi-Wen LIU, Chih-Chieh SUN
  • Patent number: 11951587
    Abstract: The present disclosure is directed to techniques of zone-based target control in chemical mechanical polishing of wafers. Multiple zones are identified on a surface of a wafer. The CMP target is achieved on each zone in a sequence of CMP processes. Each CMP process in the sequence achieves the CMP target for only one zone, using a CMP process selective to other zones.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Liang Chung, Che-Hao Tu, Kei-Wei Chen, Chih-Wen Liu
  • Publication number: 20240087896
    Abstract: Methods of forming line-end extensions and devices having line-end extensions are provided. In some embodiments, a method includes forming a patterned photoresist on a first region of a hard mask layer. A line-end extension region is formed in the hard mask layer. The line-end extension region extends laterally outward from an end of the first region of the hard mask layer. The line-end extension region may be formed by changing a physical property of the hard mask layer at the line-end extension region.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Chih-Min HSIAO, Chien-Wen LAI, Ru-Gun LIU, Chih-Ming LAI, Shih-Ming CHANG, Yung-Sung YEN, Yu-Chen CHANG
  • Publication number: 20240068124
    Abstract: An apparatus for producing silicon carbide crystal is provided and includes a composite structure formed by a plurality of graphite layers and silicon carbide seed crystals, wherein a density or thickness of each layer of graphite is gradually adjusted to reduce a difference of a thermal expansion coefficient and Young's modulus between the graphite layers and silicon carbide. The composite structure can be stabilized on a top portion or an upper cover of a crucible made of graphite, thereby preventing the silicon carbide crystal from falling off.
    Type: Application
    Filed: August 23, 2023
    Publication date: February 29, 2024
    Inventors: CHIH-LUNG LIN, PO-FEI YANG, CHIE-SHENG LIU, CHUNG-HAO LIN, HSIN-CHEN YEH, HAO-WEN WU
  • Publication number: 20240050995
    Abstract: A process tool including a polishing pad on a top surface of a wafer platen. A wafer carrier is configured to hold a wafer over the polishing pad. A slurry dispenser is configured to dispense an abrasive slurry including a plurality of charged abrasive particles having a first polarity onto the polishing pad. A first conductive rod is within the wafer platen and coupled to a first voltage supply. A wafer roller is configured to support the wafer. A first wafer brush is arranged beside the wafer roller. A second conductive rod is within the first wafer brush and coupled to a second voltage supply. The first voltage supply is configured to apply a first charge having a second polarity, opposite the first polarity, to the first conductive rod. The second voltage supply is configured to apply a second charge having the second polarity to the second conductive rod.
    Type: Application
    Filed: August 15, 2022
    Publication date: February 15, 2024
    Inventors: Chih-Wen Liu, Yeo-Sin Lin, Shu-Wei Hsu, Che-Hao Tu, Hui-Chi Huang, Kei-Wei Chen
  • Publication number: 20210166972
    Abstract: The current disclosure provides a semiconductor fabrication method that defines the height of gate structures at the formation of the gate structure. A gate line-end region is formed by removing a portion of a gate structure. A resulted recess is filled with a dielectric material is chosen to have a material property suitable for a later contact formation process of forming a metal contact. A metal contact structure is formed through the recess filling dielectric layer to connect to a gate structure and/or a source/drain region.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: Che-Liang CHUNG, Che-Hao Tu, KEI-WEI CHEN, Chih-Wen Liu, You-Shiang Lin, Yi-Ching Liang
  • Patent number: 10943822
    Abstract: The current disclosure provides a semiconductor fabrication method that defines the height of gate structures at the formation of the gate structure. A gate line-end region is formed by removing a portion of a gate structure. A resulted recess is filled with a dielectric material is chosen to have a material property suitable for a later contact formation process of forming a metal contact. A metal contact structure is formed through the recess filling dielectric layer to connect to a gate structure and/or a source/drain region.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: March 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Liang Chung, Che-Hao Tu, Kei-Wei Chen, Chih-Wen Liu, You-Shiang Lin, Yi-Ching Liang
  • Publication number: 20210023678
    Abstract: A system controls a flow of a chemical mechanical polish (CMP) slurry into a chamber to form a slurry reservoir within the chamber. Once the slurry reservoir has been formed within the chamber, the system moves a polishing head to position and force a surface of a wafer that is attached to the polishing head into contact with a polishing pad attached to a platen within the chamber. A wafer/pad interface is formed at the surface of the wafer forced into contact with the polishing pad and the wafer/pad interface is disposed below an upper surface of the slurry reservoir. During CMP processing, the system controls one or more of a level, a force, and a rotation of the platen, a position, a force and a rotation of the polishing head to conduct the CMP processing of the surface of the wafer at the wafer/pad interface.
    Type: Application
    Filed: October 12, 2020
    Publication date: January 28, 2021
    Inventors: Chih-Wen Liu, Hao-Yun Cheng, Che-Hao Tu, Kei-Wei Chen
  • Patent number: 10800004
    Abstract: A system controls a flow of a chemical mechanical polish (CMP) slurry into a chamber to form a slurry reservoir within the chamber. Once the slurry reservoir has been formed within the chamber, the system moves a polishing head to position and force a surface of a wafer that is attached to the polishing head into contact with a polishing pad attached to a platen within the chamber. A wafer/pad interface is formed at the surface of the wafer forced into contact with the polishing pad and the wafer/pad interface is disposed below an upper surface of the slurry reservoir. During CMP processing, the system controls one or more of a level, a force, and a rotation of the platen, a position, a force and a rotation of the polishing head to conduct the CMP processing of the surface of the wafer at the wafer/pad interface.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: October 13, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wen Liu, Hao-Yun Cheng, Che-Hao Tu, Kei-Wei Chen
  • Publication number: 20200101582
    Abstract: A system controls a flow of a chemical mechanical polish (CMP) slurry into a chamber to form a slurry reservoir within the chamber. Once the slurry reservoir has been formed within the chamber, the system moves a polishing head to position and force a surface of a wafer that is attached to the polishing head into contact with a polishing pad attached to a platen within the chamber. A wafer/pad interface is formed at the surface of the wafer forced into contact with the polishing pad and the wafer/pad interface is disposed below an upper surface of the slurry reservoir. During CMP processing, the system controls one or more of a level, a force, and a rotation of the platen, a position, a force and a rotation of the polishing head to conduct the CMP processing of the surface of the wafer at the wafer/pad interface.
    Type: Application
    Filed: January 18, 2019
    Publication date: April 2, 2020
    Inventors: Chih-Wen Liu, Hao-Yun Cheng, Che-Hao Tu, Kei-Wei Chen
  • Publication number: 20200094369
    Abstract: The present disclosure is directed to techniques of zone-based target control in chemical mechanical polishing of wafers. Multiple zones are identified on a surface of a wafer. The CMP target is achieved on each zone in a sequence of CMP processes. Each CMP process in the sequence achieves the CMP target for only one zone, using a CMP process selective to other zones.
    Type: Application
    Filed: August 12, 2019
    Publication date: March 26, 2020
    Inventors: Che-Liang Chung, Che-Hao Tu, Kei-Wei Chen, Chih-Wen Liu
  • Publication number: 20190287852
    Abstract: The current disclosure provides a semiconductor fabrication method that defines the height of gate structures at the formation of the gate structure. A gate line-end region is formed by removing a portion of a gate structure. A resulted recess is filled with a dielectric material is chosen to have a material property suitable for a later contact formation process of forming a metal contact. A metal contact structure is formed through the recess filling dielectric layer to connect to a gate structure and/or a source/drain region.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 19, 2019
    Inventors: Che-Liang Chung, Che-Hao Tu, KEI-WEI CHEN, Chih-Wen Liu, You-Shiang Lin, Yi-Ching Liang
  • Patent number: 9941109
    Abstract: A method is presented that includes the step of polishing a wafer positioned on a platen. After polishing the wafer, the method includes initiating a high pressure rinse on the wafer while the wafer is positioned on the platen, wherein the high pressure rinse includes a hydrophilic solution. The wafer is soaked in the hydrophilic solution, and after soaking the wafer, the wafer is cleaned.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: April 10, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wen Liu, Che-Hao Tu, Po-Chin Nien, William Weilun Hong, Ying-Tsung Chen
  • Patent number: 9922837
    Abstract: A method includes measuring a topography of a wafer, determining that a first portion of the wafer has a greater thickness than a specified thickness. The method further includes, after measuring the wafer, performing a Chemical Mechanical Polishing (CMP) process to a first side of the wafer, and during application of the CMP process, applying additional pressure to a region of the wafer, the region comprising an asymmetric part of the wafer, the region including at least a part of the first portion of the wafer.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: March 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Wen Liu, Che-Hao Tu, Po-Chin Nien, William Weilun Hong, Ying-Tsung Chen
  • Publication number: 20180047662
    Abstract: A method of manufacturing an interposer substrate, including providing a carrier having a first circuit layer formed thereon, forming a plurality of conductive pillars on the first circuit layer, forming a first insulating layer on the carrier, with the conductive pillars being exposed from the first insulating layer, forming, on the conductive pillars a second circuit layer that is electrically connected to the conductive pillars, forming a second insulating layer on the second surface of the first insulating layer and the second circuit layer, exposing a portion of a surface of the second circuit layer from the second insulating layer, and removing the carrier. The invention further provides the interposer substrate as described above.
    Type: Application
    Filed: October 27, 2017
    Publication date: February 15, 2018
    Applicant: PHOENIX PIONEER TECHNOLOGY CO., LTD.
    Inventors: Che-Wei Hsu, Shih-Ping Hsu, Chih-Wen Liu
  • Publication number: 20180005840
    Abstract: A method is presented that includes the step of polishing a wafer positioned on a platen. After polishing the wafer, the method includes initiating a high pressure rinse on the wafer while the wafer is positioned on the platen, wherein the high pressure rinse includes a hydrophilic solution. The wafer is soaked in the hydrophilic solution, and after soaking the wafer, the wafer is cleaned.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 4, 2018
    Inventors: Chih-Wen Liu, Che-Hao Tu, Po-Chin Nien, William Weilun Hong, Ying-Tsung Chen
  • Patent number: 9831165
    Abstract: A method of manufacturing an interposer substrate, including providing a carrier having a first circuit layer formed thereon, forming a plurality of conductive pillars on the first circuit layer, forming a first insulating layer on the carrier, with the conductive pillars being exposed from the first insulating layer, forming on the conductive pillars a second circuit layer that is electrically connected to the conductive pillars, forming a second insulating layer on the second surface of the first insulating layer and the second circuit layer, exposing a portion of a surface of the second circuit layer from the second insulating layer, and removing the carrier. The invention further provides the interposer substrate as described above.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: November 28, 2017
    Assignee: PHOENIX PIONEER TECHNOLOGY CO., LTD.
    Inventors: Che-Wei Hsu, Shih-Ping Hsu, Chih-Wen Liu
  • Publication number: 20170256414
    Abstract: A method includes measuring a topography of a wafer, determining that a first portion of the wafer has a greater thickness than a specified thickness. The method further includes, after measuring the wafer, performing a Chemical Mechanical Polishing (CMP) process to a first side of the wafer, and during application of the CMP process, applying additional pressure to a region of the wafer, the region comprising an asymmetric part of the wafer, the region including at least a part of the first portion of the wafer.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 7, 2017
    Inventors: Chih-Wen Liu, Che-Hao Tu, Po-Chin Nien, William Weilun Hong, Ying-Tsung Chen
  • Publication number: 20160104652
    Abstract: A method for fabricating a package structure is provided, which includes the steps of: forming a wiring layer on a carrier by electroplating; disposing at least one electronic component on the wiring layer; forming on the carrier an insulating layer that encapsulates the wiring layer and the electronic component; and removing the carrier. With the single wiring layer having one surface electrically connected the at least one electronic component and the other surface electrically connected to a plurality of conductive elements, the package structure has a signal transmission path that is shortened.
    Type: Application
    Filed: April 13, 2015
    Publication date: April 14, 2016
    Inventors: Shih-Ping Hsu, Chih-Wen Liu, Tang-I Wu, Shu-Wei Hu