Patents by Inventor Chih-Yu MA

Chih-Yu MA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220262681
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Patent number: 11342228
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: May 24, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Publication number: 20210257496
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 19, 2021
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Patent number: 10991826
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: April 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Publication number: 20200365720
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Publication number: 20200350435
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Patent number: 10734524
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: August 4, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Patent number: 10720530
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: July 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Publication number: 20200105934
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Application
    Filed: November 20, 2018
    Publication date: April 2, 2020
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Publication number: 20200098645
    Abstract: A structure includes a stepped crystalline substrate that includes an upper step, a lower step, and a step rise. A first fin includes a crystalline structure having a first lattice constant. The first fin is formed over the lower step. A second fin includes a crystalline structure having a second lattice constant, the second lattice constant being different than the first lattice constant. The second fin can be formed over the upper step apart from the first fin. A second crystalline structure can be formed over the first crystalline structure and the tops of the fins aligned. The first and second fins can be made of the same material, but with different heights and different channel strain values. The first fin can be used as an NMOS fin and the second fin can be used as a PMOS fin of a CMOS FinFET.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Cheng-Han Lee, Chih-Yu Ma, Shih-Chieh Chang
  • Publication number: 20200091343
    Abstract: A dopant boost in the source/drain regions of a semiconductor device, such as a transistor can be provided. A semiconductor device can include a doped epitaxy of a first material having a plurality of boosting layers embedded within. The boosting layers can be of a second material different from the first material. Another device can include a source/drain feature of a transistor. The source/drain feature includes a doped source/drain material and one or more embedded distinct boosting layers. A method includes growing a boosting layer in a recess of a substrate, where the boosting layer is substantially free of dopant. The method also includes growing a layer of doped epitaxy in the recess on the boosting layer.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shih-Chieh Chang, Cheng-Han Lee
  • Patent number: 10510618
    Abstract: A structure includes a stepped crystalline substrate that includes an upper step, a lower step, and a step rise. A first fin includes a crystalline structure having a first lattice constant. The first fin is formed over the lower step. A second fin includes a crystalline structure having a second lattice constant, the second lattice constant being different than the first lattice constant. The second fin can be formed over the upper step apart from the first fin. A second crystalline structure can be formed over the first crystalline structure and the tops of the fins aligned. The first and second fins can be made of the same material, but with different heights and different channel strain values. The first fin can be used as an NMOS fin and the second fin can be used as a PMOS fin of a CMOS FinFET.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Han Lee, Chih-Yu Ma, Shih-Chieh Chang
  • Patent number: 10490661
    Abstract: A dopant boost in the source/drain regions of a semiconductor device, such as a transistor can be provided. A semiconductor device can include a doped epitaxy of a first material having a plurality of boosting layers embedded within. The boosting layers can be of a second material different from the first material. Another device can include a source/drain feature of a transistor. The source/drain feature includes a doped source/drain material and one or more embedded distinct boosting layers. A method includes growing a boosting layer in a recess of a substrate, where the boosting layer is substantially free of dopant. The method also includes growing a layer of doped epitaxy in the recess on the boosting layer.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: November 26, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shih-Chieh Chang, Cheng-Han Lee
  • Publication number: 20190334029
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Patent number: 10347764
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: July 9, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Publication number: 20190006507
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Application
    Filed: October 5, 2017
    Publication date: January 3, 2019
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Publication number: 20180151730
    Abstract: A dopant boost in the source/drain regions of a semiconductor device, such as a transistor can be provided. A semiconductor device can include a doped epitaxy of a first material having a plurality of boosting layers embedded within. The boosting layers can be of a second material different from the first material. Another device can include a source/drain feature of a transistor. The source/drain feature includes a doped source/drain material and one or more embedded distinct boosting layers. A method includes growing a boosting layer in a recess of a substrate, where the boosting layer is substantially free of dopant. The method also includes growing a layer of doped epitaxy in the recess on the boosting layer.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 31, 2018
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shih-Chieh Chang, Cheng-Han Lee
  • Publication number: 20180114729
    Abstract: A structure includes a stepped crystalline substrate that includes an upper step, a lower step, and a step rise. A first fin includes a crystalline structure having a first lattice constant. The first fin is formed over the lower step. A second fin includes a crystalline structure having a second lattice constant, the second lattice constant being different than the first lattice constant. The second fin can be formed over the upper step apart from the first fin. A second crystalline structure can be formed over the first crystalline structure and the tops of the fins aligned. The first and second fins can be made of the same material, but with different heights and different channel strain values. The first fin can be used as an NMOS fin and the second fin can be used as a PMOS fin of a CMOS FinFET.
    Type: Application
    Filed: October 24, 2016
    Publication date: April 26, 2018
    Inventors: Cheng-Han Lee, Chih-Yu Ma, Shih-Chieh Chang
  • Patent number: 9721826
    Abstract: A wafer supporting structure in semiconductor manufacturing, and a device and a method for manufacturing semiconductor are provided. In accordance with some embodiments of the instant disclosure, a wafer supporting structure in semiconductor manufacturing includes a transparent ring and at least two arms. The arms are connected to the transparent ring.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: August 1, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Yu Ma, Yii-Chi Lin, Zheng-Yang Pan, Chia-Chiung Lo
  • Publication number: 20170213759
    Abstract: A wafer supporting structure in semiconductor manufacturing, and a device and a method for manufacturing semiconductor are provided. In accordance with some embodiments of the instant disclosure, a wafer supporting structure in semiconductor manufacturing includes a transparent ring and at least two arms. The arms are connected to the transparent ring.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventors: Chih-Yu MA, Yii-Chi LIN, Zheng-Yang PAN, Chia-Chiung LO