Patents by Inventor Chih-Yuan Yeh

Chih-Yuan Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240097945
    Abstract: A signal transmission device has an initial signal stabilization mechanism and includes a driver and a bypass circuit. The driver includes: a first current source circuit coupled between a high voltage terminal and a first node; a second current source circuit coupled between a low voltage terminal and a second node; and a driving circuit coupled between the first node and the second node. The driving circuit outputs an output signal according to a first bias voltage of the first node, a second bias voltage of the second node, and an input signal during a signal output operation. The bypass circuit is coupled between the first node and the second node. In the beginning of the signal output operation, the bypass circuit conducts a current from the first node to the second node to assist in establishing the first and second bias voltages and thereby stabilize the output signal.
    Type: Application
    Filed: September 13, 2023
    Publication date: March 21, 2024
    Inventors: CHIH-YUAN YEH, HUAN-CHUN LI
  • Publication number: 20240030924
    Abstract: A signal generating circuit and a signal generating method are provided. The signal generating circuit includes a first synchronization circuit configured to synchronize a beacon signal and a first signal edge of a clock signal to generate a first synchronization signal; a frequency dividing circuit configured to receive the clock signal and perform frequency division operation on the clock signal to generate a frequency division signal, wherein the duty cycle of the frequency division signal is 50%; a second synchronization circuit configured to receive the first synchronization signal and the frequency division signal and synchronize the first synchronization signal and a second signal edge of frequency division signal to generate a second synchronization signal; and a synthesis circuit configured to receive the second synchronization signal and the frequency division signal and perform AND operation on the second synchronization signal and the frequency division signal to output full-cycle signals.
    Type: Application
    Filed: July 24, 2023
    Publication date: January 25, 2024
    Applicant: REALTEK SEMICONDUCTOR CORP.
    Inventor: Chih-Yuan Yeh
  • Patent number: 10914805
    Abstract: A signal error calibrating method is disclosed herein and includes following steps: filtering an error voltage in a sensor by a low pass filter in a calibration mode; converting the offset voltage to be a digital offset signal by an analog digital signal converter; converting the digital offset signal to be an offset calibrating signal by a digital analog signal converter; transmitting the offset calibrating signal to an input end of the sensor so as to offset an error voltage at the input end of the sensor. After calibrating the error voltage, the analog digital converter in the error calibrating circuit can be used for the need of signal output and the low pass filter is turned off at the same time.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: February 9, 2021
    Assignee: National Applied Research Laboratories
    Inventors: Chih-Yuan Yeh, Po-Chang Wu, Hann-Huei Tsai, Ying-Zong Juang
  • Patent number: 10656184
    Abstract: A signal process circuit includes a signal modulation unit, a first resistor, a second resistor, a first discharge unit, a second discharge unit and a discharge detection unit. The signal modulation unit is used to modulate an input signal for generating a modulated signal. The first resistor is coupled between the signal modulation unit and an operation node. The second resistor is coupled between the operation node and the signal modulation unit. The first discharge unit is coupled to the signal modulation unit. The discharge unit is coupled to the signal modulation unit. The discharge detection unit is coupled to the first discharge unit, the operation node and the second discharge unit for detecting an output common voltage and control a discharge path accordingly.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: May 19, 2020
    Assignee: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Ying-Zong Juang, Hann-Huei Tsai, Po-Chang Wu, Yu-Chen Liu, Chih-Yuan Yeh
  • Publication number: 20190271753
    Abstract: A signal error calibrating method is disclosed herein and includes following steps: filtering an error voltage in a sensor by a low pass filter in a calibration mode; converting the offset voltage to be a digital offset signal by an analog digital signal converter; converting the digital offset signal to be an offset calibrating signal by a digital analog signal converter; transmitting the offset calibrating signal to an input end of the sensor so as to offset an error voltage at the input end of the sensor. After calibrating the error voltage, the analog digital converter in the error calibrating circuit can be used for the need of signal output and the low pass filter is turned off at the same time.
    Type: Application
    Filed: April 17, 2018
    Publication date: September 5, 2019
    Inventors: CHIH-YUAN YEH, PO-CHANG WU, HANN-HUEI TSAI, YING-ZONG JUANG
  • Publication number: 20170070193
    Abstract: The invention provides an RF power amplifier with post-distortion linearizer. The power amplifier includes a main amplifier, an auxiliary amplifier and a phase compensator. The first amplifier has a first input end and a first output end and operates in class A or AB. The auxiliary amplifier has a second input end and a second output end and operates in class B or C. The second output end connects the first output end to form a signal output end. The phase compensator has a third input end and a third output end and compensates a phase difference between the main and auxiliary amplifiers to make outputs of the two amplifiers opposite in phase. The third output end connects the second input end. The third input end connects the first input end to form a signal input end.
    Type: Application
    Filed: November 22, 2015
    Publication date: March 9, 2017
    Applicant: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Ying-Zong Juang, Hann-Huei Tsai, Po-Chang Wu, Kuei-Cheng Lin, Chih-Yuan Yeh, Hwann-Kaeo Chiou
  • Patent number: 9548673
    Abstract: The invention includes two parallel paths. A first path is composed of two contact ends of a first electronic switch and a first, third and fifth diodes, which connect in series. One contact end connects a first end of an AC source, and a control end connects a second end of the AC source. A second path is composed of two contact ends of a second electronic switch and a second, fourth and sixth diodes, which connect in series. One contact end connects the second end of the AC source, and a control end connects the first end of the AC source. The AC source is connected between the positive ends of the first and second diodes. The second end of the AC source separately connects negative ends of the first and third diodes through two capacitors. The first end of the AC source separately connects negative ends of the second and fourth diodes through another two capacitors. Negative ends of the fifth and sixth diodes connect together to form a voltage output end.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: January 17, 2017
    Assignee: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Ying-Zong Juang, Hann-Huei Tsai, Po-Chang Wu, Kuei-Cheng Lin, Chih-Yuan Yeh
  • Patent number: 9118338
    Abstract: A current-steering offset compensation circuit is configured for compensating an offset caused by process variation or environment variation of a signal processor. The signal processor includes a pair of differential input terminals and a pair of differential output terminals. The current-steering offset compensation circuit comprises a current-steering circuit connected with the signal processor, a digital control unit which generates a digital control signal according to the outputs from the pair of differential output terminals of the signal processor, and a digital-to-analog converter which receives the digital control signal and outputs a control voltage, wherein the current-steering circuit receives the control voltage, so as to steer the current of the pair of differential input terminals, to reduce the offset in the signal processor.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: August 25, 2015
    Assignee: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Ying-Zong Juang, Hann-Huei Tsai, Po-Chang Wu, Chih-Yuan Yeh, Kuei-Cheng Lin
  • Publication number: 20150171885
    Abstract: A current-steering offset compensation circuit is configured for compensating an offset caused by process variation or environment variation of a signal processor. The signal processor includes a pair of differential input terminals and a pair of differential output terminals. The current-steering offset compensation circuit comprises a current-steering circuit connected with the signal processor, a digital control unit which generates a digital control signal according to the outputs from the pair of differential output terminals of the signal processor, and a digital-to-analog converter which receives the digital control signal and outputs a control voltage, wherein the current-steering circuit receives the control voltage, so as to steer the current of the pair of differential input terminals, to reduce the offset in the signal processor.
    Type: Application
    Filed: February 7, 2014
    Publication date: June 18, 2015
    Applicant: National Applied Research Laboratories
    Inventors: Ying-Zong JUANG, Hann-Huei Tsai, Po-Chang Wu, Chih-Yuan Yeh, Kuei-Cheng Lin