Patents by Inventor Chih-Chang Chen

Chih-Chang Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12009462
    Abstract: A light source assembly is provided, including a substrate; a light-emitting element disposed on the substrate; and an optical film at least partially overlapped with the substrate. A diffuser film is at least partially overlapped with the optical film, wherein a haze of the diffuser film is greater than 85%, and a thickness of the diffuser film ranges from 0.04 mm to 0.35 mm. The optical film and the diffuser film are capable of transmitting at least a part of light emitted from the light-emitting element.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: June 11, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Chia-Lun Chen, Shih-Chang Huang, Ming-Hui Chu, Chih-Chang Chen, Kai-Hsien Hsiung, Hui-Chi Wang, Wun-Yuan Su
  • Publication number: 20240171134
    Abstract: A feedback circuit coupled between an input terminal and an output terminal of an amplifier circuit includes an input terminal, an output terminal, a first set of transistors and a second set of transistors. The first set of transistors is coupled between the input terminal and the output terminal of the feedback circuit, and includes a first terminal, a second terminal, and a control terminal used to receive a first control signal to turn on or off the first set of transistors. The second set of transistors is coupled between the input terminal and the output terminal of the feedback circuit, and includes a first terminal, a second terminal, and a control terminal used to receive a second control signal to turn on or off the second set of transistors.
    Type: Application
    Filed: December 20, 2022
    Publication date: May 23, 2024
    Applicant: RichWave Technology Corp.
    Inventors: Hang Chang, Chih-Sheng Chen
  • Publication number: 20240170953
    Abstract: An electrostatic discharge protection circuit is provided. The electrostatic discharge protection circuit includes first, second, and third transistors and a discharge circuit. The first transistor has a first gate, a first drain coupled to the bonding pad, and a first source coupled to a first node. The second transistor has a second gate coupled to a power terminal, a second drain coupled to the first gate, and a second source coupled to a ground. The third transistor has a third gate coupled to the power terminal, a third drain coupled to the first node, and a third source coupled to the ground. The discharge circuit is controlled by a driving voltage at the first node. In response to an electrostatic discharge event occurring on the bonding pad, the discharge circuit provides a discharge path between the bonding pad and the ground according to the driving voltage.
    Type: Application
    Filed: November 17, 2022
    Publication date: May 23, 2024
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Chih-Hsuan LIN, Shao-Chang HUANG, Wen-Hsin LIN, Yeh-Ning JOU, Hwa-Chyi CHIOU, Chun-Chih CHEN
  • Publication number: 20240170230
    Abstract: A method for prelithiating a soft carbon negative electrode includes the steps of: disposing the soft carbon negative electrode and a lithium metal piece spaced apart from each other with a lithium-containing electrolyte present therebetween; prelithiating the soft carbon negative electrode at a first constant C-rate until a voltage thereof is reduced to a first predetermined voltage not greater than 0.3 V vs. Li/Li+, the first constant C-rate being not greater than 5 C; prelithiating the soft carbon negative electrode at a second constant C-rate until the voltage thereof is reduced to a second predetermined voltage lower than the first predetermined voltage, the second constant C-rate being not greater than 0.2 C and being less than the first constant C-rate; and prelithiating the soft carbon negative electrode at a prelithiation constant voltage which is not greater than the second predetermined voltage, thereby completing prelithiation of the soft carbon negative electrode.
    Type: Application
    Filed: January 13, 2023
    Publication date: May 23, 2024
    Inventors: Yan-Shi CHEN, Guo-Hsu LU, Chi-Chang HU, Chih-Yu KU, Tien-Yu YI
  • Patent number: 11982936
    Abstract: A method of fabricating a photomask includes selectively exposing portions of a photomask blank to radiation to change an optical property of the portions of the photomask blank exposed to the radiation, thereby forming a pattern of exposed portions of the photomask blank and unexposed portions of the photomask blank. The pattern corresponds to a pattern of semiconductor device features.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsin-Chang Lee, Ping-Hsun Lin, Yen-Cheng Ho, Chih-Cheng Lin, Chia-Jen Chen
  • Publication number: 20240151935
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 8, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240151932
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 28, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240155234
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 27, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240151936
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 27, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240152029
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: November 2, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Patent number: 11978677
    Abstract: In an embodiment, a method includes: placing a wafer on an implanter platen, the wafer including alignment marks; measuring a position of the wafer by measuring positions of the alignment marks with one or more cameras; determining an angular displacement between the position of the wafer and a reference position of the wafer; and rotating the implanter platen by the angular displacement.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Cheng Chen, Chih-Kai Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11972113
    Abstract: A method for performing link management of a memory device in predetermined communications architecture with aid of handshaking phase transition control and associated apparatus are provided. The method may include: utilizing at least one upper layer controller of a transmission interface circuit to turn on a physical layer (PHY) circuit of the transmission interface circuit, for starting establishing a link between a host device and the memory device; before entering a first handshaking phase, utilizing the PHY circuit to receive any first incoming data sent from the host device to determine whether the any first incoming data indicates that the host device is in a corresponding first handshaking phase; and in response to the any first incoming data indicating that the host device is in the corresponding first handshaking phase, utilizing the PHY circuit to send first outgoing data that is equal to first predetermined data to the host device.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 30, 2024
    Assignee: Silicon Motion, Inc.
    Inventors: Bo-Chang Ye, Kuo-Cyuan Kuo, Chih-Chiang Chen
  • Publication number: 20240132330
    Abstract: Motor control architecture including a travel, a hoist, and a controller is disclosed. The travel disposed on a main rail having an auxiliary-encoder includes a master-driver and a slave-driver for driving two motors. Each motor has a main-encoder. The hoist drives a rope and calculates a rope length continuously. The controller calculates an anti-sway position command based on the rope-length and a position command. The two drivers perform a full closed-loop computation based on a feedback of one main-encoder, a feedback of the auxiliary-encoder, and the anti-sway position command. Wherein, the master-driver controls one motor based on a speed command generated by the full closed-loop computation and the slave-driver follows the speed command and a torque command of the master-driver to drive another motor; or the two drivers compensate the torque command based on an error value between the feedback of one main-encoder and the feedback of the auxiliary-encoder.
    Type: Application
    Filed: October 18, 2023
    Publication date: April 25, 2024
    Inventors: Huan-Chang CHEN, Po-Jen KO, Chun-Ju WU, Lon-Jay CHENG, Wan-Ping CHEN, Chih-Yuan CHANG
  • Patent number: 11967594
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a stack of semiconductor layers spaced apart from and aligned with each other, a first source/drain epitaxial feature in contact with a first one or more semiconductor layers of the stack of semiconductor layers, and a second source/drain epitaxial feature disposed over the first source/drain epitaxial feature. The second source/drain epitaxial feature is in contact with a second one or more semiconductor layers of the stack of semiconductor layers. The structure further includes a first dielectric material disposed between the first source/drain epitaxial feature and the second source/drain epitaxial feature and a first liner disposed between the first source/drain epitaxial feature and the second source/drain epitaxial feature. The first liner is in contact with the first source/drain epitaxial feature and the first dielectric material.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Cheng Chen, Zhi-Chang Lin, Jung-Hung Chang, Lo Heng Chang, Chien Ning Yao, Kuo-Cheng Chiang, Chih-Hao Wang
  • Patent number: 11966133
    Abstract: An electronic device is disclosed. The electronic device includes a substrate, a plurality of color filters disposed on the substrate, an optical film disposed on the plurality of color filter, and a defect disposed between the substrate and the optical film. The optical film has a first base, a protective layer on the first base, and a second base between the first base and the protective layer and having a first processed area. In a top view of the electronic device, the first processed area corresponds to the defect and at least partially overlaps at least two color filters.
    Type: Grant
    Filed: May 18, 2023
    Date of Patent: April 23, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Tai-Chi Pan, Chin-Lung Ting, I-Chang Liang, Chih-Chiang Chang Chien, Po-Wen Lin, Kuang-Ming Fan, Sheng-Nan Chen
  • Patent number: 11963300
    Abstract: A panel device including a substrate, a conductor pad, a turning wire, and a circuit board is provided. The substrate has a first surface and a second surface connected to the first surface while a normal direction of the second surface is different from a normal direction of the first surface. The conductor pad is disposed on the first surface of the substrate. The turning wire is disposed on the substrate and extends from the first surface to the second surface. The turning wire includes a wiring layer in contact with the conductor pad and a wire covering layer covering the wiring layer. The circuit board is bonded to and electrically connected to the wire covering layer. A manufacturing method of a panel device is also provided herein.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: April 16, 2024
    Assignee: Au Optronics Corporation
    Inventors: Chun-Yueh Hou, Hao-An Chuang, Fan-Yu Chen, Hsi-Hung Chen, Yun Cheng, Wen-Chang Hsieh, Chih-Wen Lu
  • Publication number: 20240113113
    Abstract: Methods of cutting gate structures, and structures formed, are described. In an embodiment, a structure includes first and second gate structures over an active area, and a gate cut-fill structure. The first and second gate structures extend parallel. The active area includes a source/drain region disposed laterally between the first and second gate structures. The gate cut-fill structure has first and second primary portions and an intermediate portion. The first and second primary portions abut the first and second gate structures, respectively. The intermediate portion extends laterally between the first and second primary portions. First and second widths of the first and second primary portions along longitudinal midlines of the first and second gate structures, respectively, are each greater than a third width of the intermediate portion midway between the first and second gate structures and parallel to the longitudinal midline of the first gate structure.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Chih-Chang Hung, Chia-Jen Chen, Ming-Ching Chang, Shu-Yuan Ku, Yi-Hsuan Hsiao, I-Wei Yang
  • Publication number: 20240096895
    Abstract: According to one example, a semiconductor device includes a substrate and a fin stack that includes a plurality of nanostructures, a gate device surrounding each of the nanostructures, and inner spacers along the gate device and between the nanostructures. A width of the inner spacers differs between different layers of the fin stack.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Jui-Chien Huang, Shih-Cheng Chen, Chih-Hao Wang, Kuo-Cheng Chiang, Zhi-Chang Lin, Jung-Hung Chang, Lo-Heng Chang, Shi Ning Ju, Guan-Lin Chen
  • Publication number: 20240096677
    Abstract: A method of correcting a misalignment of a wafer on a wafer holder and an apparatus for performing the same are disclosed. In an embodiment, a semiconductor alignment apparatus includes a wafer stage; a wafer holder over the wafer stage; a first position detector configured to detect an alignment of a wafer over the wafer holder in a first direction; a second position detector configured to detect an alignment of the wafer over the wafer holder in a second direction; and a rotational detector configured to detect a rotational alignment of the wafer over the wafer holder.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Chia-Cheng Chen, Chih-Kai Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20240094625
    Abstract: A method of making a semiconductor device includes forming at least one fiducial mark on a photomask. The method further includes defining a pattern including a plurality of sub-patterns on the photomask in a pattern region. The defining the pattern includes defining a first sub-pattern of the plurality of sub-patterns having a first spacing from a second sub-pattern of the plurality of sub-patterns, wherein the first spacing is different from a second spacing between the second sub-pattern and a third sub-pattern of the plurality of sub-patterns.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Hsin-Chang LEE, Ping-Hsun LIN, Chih-Cheng LIN, Chia-Jen CHEN