Patents by Inventor Chin-Fu Kuo

Chin-Fu Kuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133716
    Abstract: A reading device for capacitive sensing element comprises a differential capacitive sensing element, a modulator, a charge-voltage conversion circuit, a phase adjustment circuit, a demodulator and a low-pass filter. The modulator outputs a modulation signal to the common node of the capacitive sensing element and modulates the output signal of the capacitive sensing element. The two input terminals of the charge-to-voltage conversion circuit are connected to two non-common nodes of the capacitive sensing element. The charge-to-voltage converter read the output charge of the capacitive sensing element and convert it into a voltage signal. The modulator generates a demodulation signal through the phase adjustment circuit. The demodulator receives the demodulation signal from the phase adjustment circuit and demodulates the output of the charge-to-voltage conversion circuit. The low-pass filter is connected to the output of the demodulator for filtering the demodulated voltage signal to output the read signal.
    Type: Application
    Filed: January 13, 2023
    Publication date: April 25, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Lu-Pu LIAO, Yu-Sheng LIN, Liang-Ying LIU, Chin-Fu KUO
  • Patent number: 11815369
    Abstract: The differential capacitor device includes a differential capacitor sensing component, a calibration capacitor assembly and two output terminals. The differential capacitive sensing element has a common point terminal, a first non-common point terminal and a second non-common point terminal, and the common point terminal is configured to receive an input voltage. The calibration capacitor assembly has a first calibration capacitor and a second calibration capacitor, one terminal of the calibration capacitor assembly is coupled to the first non-common point terminal and the second non-common point terminal, and the other terminal of the calibration capacitor assembly is configured to receive a first calibration voltage and a second calibration voltage. The two output terminals are respectively coupled to the first non-common point terminal and the second non-common point terminal to output a first signal and a second signal.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: November 14, 2023
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Lu-Po Liao, Chin-Fu Kuo, Liang-Ying Liu, Yu-Sheng Lin
  • Publication number: 20230184567
    Abstract: The differential capacitor device includes a differential capacitor sensing component, a calibration capacitor assembly and two output terminals. The differential capacitive sensing element has a common point terminal, a first non-common point terminal and a second non-common point terminal, and the common point terminal is configured to receive an input voltage. The calibration capacitor assembly has a first calibration capacitor and a second calibration capacitor, one terminal of the calibration capacitor assembly is coupled to the first non-common point terminal and the second non-common point terminal, and the other terminal of the calibration capacitor assembly is configured to receive a first calibration voltage and a second calibration voltage. The two output terminals are respectively coupled to the first non-common point terminal and the second non-common point terminal to output a first signal and a second signal.
    Type: Application
    Filed: July 12, 2022
    Publication date: June 15, 2023
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Lu-Po LIAO, Chin-Fu KUO, Liang-Ying LIU, Yu-Sheng LIN
  • Publication number: 20220365040
    Abstract: A microelectromechanical sensing apparatus with calibration function comprises a microelectromechanical sensor and an IC chip. The microelectromechanical sensor comprises a proof mass, a movable driving electrode and a movable sensing electrode disposed on the proof mass, and a stationary driving electrode and stationary sensing electrode disposed on a substrate, wherein the sensing electrodes output a sensing signal when the proof mass vibrates.
    Type: Application
    Filed: December 1, 2021
    Publication date: November 17, 2022
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chung-Yuan SU, Chin-Fu KUO, Liang-Ying LIU, Chao-Ta HUANG
  • Patent number: 10730744
    Abstract: A MEMS device includes a substrate, at least one anchor disposed on the substrate, a movable stage, a sensing chip disposed on the movable stage, and at least one elastic member connected with the movable stage and the anchor. The movable stage includes at least one electrode and at least one conductive connecting layer. The sensing chip includes at least one electrical interconnection connected with the conductive connecting layer. The elastic member includes at least one first electrical channel, a second electrical channel and an electrical insulation layer disposed between the first electrical channel and the second electrical channel. The first electrical channel is electrically connected with the electrical interconnection, and the second electrical channel is electrically connected with the electrode.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: August 4, 2020
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu-Wen Hsu, Che-Kai Yeh, Chin-Fu Kuo, Chao-Ta Huang
  • Publication number: 20200212826
    Abstract: A MEMS device includes a substrate, at least one anchor disposed on the substrate, a movable stage, a sensing chip disposed on the movable stage, and at least one elastic member connected with the movable stage and the anchor. The movable stage includes at least one electrode and at least one conductive connecting layer. The sensing chip includes at least one electrical interconnection connected with the conductive connecting layer. The elastic member includes at least one first electrical channel, a second electrical channel and an electrical insulation layer disposed between the first electrical channel and the second electrical channel. The first electrical channel is electrically connected with the electrical interconnection, and the second electrical channel is electrically connected with the electrode.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu-Wen HSU, Che-Kai YEH, Chin-Fu KUO, Chao-Ta HUANG
  • Patent number: 10622996
    Abstract: An adjustable sensing capacitance microelectromechanical system (MEMS) apparatus includes an ASIC and a sensing component. The ASIC includes a top surface, a readout circuit and a plurality of electrical switches. The sensing component, configured to sensing physical quantity, includes a fixed electrode and a movable electrode. The fixed electrode includes a plurality of electrode units. The movable electrode is able to be moved relative to the fixed electrode. The electrical switches are respectively and electrically coupled to the electrode units so as to control a working status of each of the electrode units, thereby changing a sensing capacitance of the MEMS sensor.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: April 14, 2020
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu-Wen Hsu, Chao-Ta Huang, Chin-Fu Kuo, Che-Kai Yeh
  • Publication number: 20180186624
    Abstract: A MEMS apparatus includes a substrate, a cover disposed on the substrate, a movable mass disposed on the substrate, and an impact absorber disposed on the cover. The impact absorber includes a restraint, a stationary stopper disposed on a lower surface of the cover, a movable stopper, elastic elements connecting the restraint and the movable stopper, a supporting element connecting the restraint and the stationary stopper, and a space disposed between the stationary stopper and the movable stopper. The impact absorber is adapted to prevent the movable mass from impacting the cover. In addition, the supporting element may be made of an electrical insulation material to reduce electrostatic interaction between the movable mass and the movable stopper.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Chin-Fu Kuo, Chao-Ta Huang
  • Patent number: 10011476
    Abstract: A MEMS apparatus includes a substrate, a cover disposed on the substrate, a movable mass disposed on the substrate, and an impact absorber disposed on the cover. The impact absorber includes a restraint, a stationary stopper disposed on a lower surface of the cover, a movable stopper, elastic elements connecting the restraint and the movable stopper, a supporting element connecting the restraint and the stationary stopper, and a space disposed between the stationary stopper and the movable stopper. The impact absorber is adapted to prevent the movable mass from impacting the cover. In addition, the supporting element may be made of an electrical insulation material to reduce electrostatic interaction between the movable mass and the movable stopper.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 3, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Chin-Fu Kuo, Chao-Ta Huang
  • Patent number: 9586815
    Abstract: A micro-electromechanical apparatus with multiple chambers and a method for manufacturing the same are provided, wherein various micro-electromechanical sensors are integrated into a single apparatus. For example, the micro-electromechanical apparatus in this disclosure may have two independent hermetically sealed chambers with different pressures, such that a micro-electromechanical barometer and a micro-electromechanical accelerometer can be operated in an optimal pressure circumstance.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: March 7, 2017
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Yuan Su, Chin-Fu Kuo, Tzung-Ching Lee, Chao-Ta Huang
  • Publication number: 20160137491
    Abstract: A micro-electromechanical apparatus with multiple chambers and a method for manufacturing the same are provided, wherein various micro-electromechanical sensors are integrated into a single apparatus. For example, the micro-electromechanical apparatus in this disclosure may have two independent hermetically sealed chambers with different pressures, such that a micro-electromechanical barometer and a micro-electromechanical accelerometer can be operated in an optimal pressure circumstance.
    Type: Application
    Filed: January 5, 2015
    Publication date: May 19, 2016
    Inventors: Chung-Yuan Su, Chin-Fu Kuo, Tzung-Ching Lee, Chao-Ta Huang
  • Patent number: 9249008
    Abstract: A MEMS device with a first electrode, a second electrode and a third electrode is disclosed. These electrodes are disposed on a substrate in such a manner that (1) a pointing direction of the first electrode is in parallel with a normal direction of the substrate, (2) a pointing direction of the third electrode is perpendicular to the pointing direction of the first electrode, (3) the second electrode includes a sensing portion and a stationary portion, (4) the first electrode and the sensing portion are configured to define a sensing capacitor, and (5) the third electrode and the stationary portion are configured to define a reference capacitor. This arrangement facilitates the MEMS device such as a differential pressure sensor, differential barometer, differential microphone and decoupling capacitor to be miniaturized.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: February 2, 2016
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu Wen Hsu, Chin Fu Kuo, Chao Ta Huang, Chun Kai Mao, Chin Hung Wang
  • Patent number: 9227840
    Abstract: A micro-electro mechanical apparatus having a PN-junction is provided. The micro-electro mechanical apparatus includes a movable mass, a conductive layer, and an electrode. The movable mass includes a P-type semiconductor layer and an N-type semiconductor layer. The PN-junction is formed between the P-type semiconductor layer and the N-type semiconductor layer. The micro-electro mechanical apparatus is capable of eliminating abnormal voltage signal when an alternating current passes through the conductive layer. The micro-electro mechanical apparatus is adapted to measure acceleration and magnetic field. The micro-electro mechanical apparatus can be other types of micro-electro mechanical apparatus such as micro-electro mechanical scanning micro-mirror.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: January 5, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Yuan Su, Chin-Fu Kuo, Chih-Yuan Chen, Chao-Ta Huang
  • Publication number: 20150183632
    Abstract: A micro-electro mechanical apparatus having a PN-junction is provided. The micro-electro mechanical apparatus includes a movable mass, a conductive layer, and an electrode. The movable mass includes a P-type semiconductor layer and an N-type semiconductor layer. The PN-junction is formed between the P-type semiconductor layer and the N-type semiconductor layer. The micro-electro mechanical apparatus is capable of eliminating abnormal voltage signal when an alternating current passes through the conductive layer. The micro-electro mechanical apparatus is adapted to measure acceleration and magnetic field. The micro-electro mechanical apparatus can be other types of micro-electro mechanical apparatus such as micro-electro mechanical scanning micro-mirror.
    Type: Application
    Filed: September 16, 2014
    Publication date: July 2, 2015
    Inventors: Chung-Yuan Su, Chin-Fu Kuo, Chih-Yuan Chen, Chao-Ta Huang
  • Patent number: 9051170
    Abstract: A microelectromechanical system device including anchors and mass is provided. Electrical interconnections are formed on the mass by using a insulation layer of mass, an electrical insulation trench and conductive through hole. The electrical interconnections replace the cross-line structure without adding additional processing steps, thereby reducing the use of the conductive layer and the electrical insulation layer. A method for fabricating the microelectromechanical system device is also provided.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: June 9, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Chao-Ta Huang, Yu-Wen Hsu, Chin-Fu Kuo
  • Publication number: 20140175572
    Abstract: A MEMS device with a first electrode, a second electrode and a third electrode is disclosed. These electrodes are disposed on a substrate in such a manner that (1) a pointing direction of the first electrode is in parallel with a normal direction of the substrate, (2) a pointing direction of the third electrode is perpendicular to the pointing direction of the first electrode, (3) the second electrode includes a sensing portion and a stationary portion, (4) the first electrode and the sensing portion are configured to define a sensing capacitor, and (5) the third electrode and the stationary portion are configured to define a reference capacitor. This arrangement facilitates the MEMS device such as a differential pressure sensor, differential barometer, differential microphone and decoupling capacitor to be miniaturized.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 26, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: YU WEN HSU, CHIN FU KUO, CHAO TA HUANG, CHUN KAI MAO, CHIN HUNG WANG
  • Publication number: 20130167632
    Abstract: A microelectromechanical system device including anchors and mass is provided. Electrical interconnections are formed on the mass by using a insulation layer of mass, an electrical insulation trench and conductive through hole. The electrical interconnections replace the cross-line structure without adding additional processing steps, thereby reducing the use of the conductive layer and the electrical insulation layer. A method for fabricating the microelectromechanical system device is also provided.
    Type: Application
    Filed: April 30, 2012
    Publication date: July 4, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chao-Ta Huang, Yu-Wen Hsu, Chin-Fu Kuo
  • Patent number: 8340328
    Abstract: According to an embodiment of the disclosure, an acoustics transducer is provided, which includes a support substrate having an upper surface and a lower surface, the upper surface including a first portion and a second portion surrounding the first portion, a recess extending from the upper surface towards the lower surface, the recess is between the first portion and the second portion of the upper surface, a vibratable membrane disposed directly on the recess, the vibratable membrane including a fixed portion fixed on the support substrate and a suspended portion, and a back plate disposed on the support substrate and opposite to the vibratable membrane. The suspended portion has an edge extending substantially along with an edge of an opening of the recess. The suspended portion is separated from the first portion and the second portion of the upper surface by an inner interval and an outer interval, respectively.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: December 25, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Di-Bao Wang, Chin-Fu Kuo, Chia-Yu Wu, Jien-Ming Chen
  • Publication number: 20120146163
    Abstract: A microphone package structure is provided, including an integrated circuit (IC) structure and a microphone structure disposed thereover and electrically connected therewith. The IC structure includes a first semiconductor substrate with opposite first and second surfaces, and a first through hole disposed in and through the first semiconductor substrate. The microphone structure includes: a second semiconductor substrate with opposite third and fourth surfaces, wherein the third surface faces to the second surface of the first semiconductor substrate; a second through hole disposed in and through the second semiconductor substrate; an acoustic sensing device embedded in the second through hole and adjacent to the third surface; and a sealing layer disposed over the fourth surface of the second semiconductor substrate, defining a back chamber with the sealing layer, wherein the first through hole allows acoustic pressure waves to penetrate and pass therethrough to the acoustic sensing device.
    Type: Application
    Filed: August 9, 2011
    Publication date: June 14, 2012
    Applicant: Industrial Technology Research Institute
    Inventors: Tzong-Che Ho, Chin-Fu Kuo, Hsin-Li Lee, Yao-Jung Lee, Li-Chi Pan
  • Publication number: 20110123053
    Abstract: According to an embodiment of the disclosure, an acoustics transducer is provided, which includes a support substrate having an upper surface and a lower surface, the upper surface including a first portion and a second portion surrounding the first portion, a recess extending from the upper surface towards the lower surface, the recess is between the first portion and the second portion of the upper surface, a vibratable membrane disposed directly on the recess, the vibratable membrane including a fixed portion fixed on the support substrate and a suspended portion, and a back plate disposed on the support substrate and opposite to the vibratable membrane. The suspended portion has an edge extending substantially along with an edge of an opening of the recess. The suspended portion is separated from the first portion and the second portion of the upper surface by an inner interval and an outer interval, respectively.
    Type: Application
    Filed: April 26, 2010
    Publication date: May 26, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Di-Bao Wang, Chin-Fu Kuo, Chia-Yu Wu, Jien-Ming Chen