Patents by Inventor Chin-Han Lin

Chin-Han Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9819144
    Abstract: A method for production of an optoelectronic device includes fabricating a plurality of vertical emitters on a semiconductor substrate. Respective top surfaces of the emitters are bonded to a heat sink, after which the semiconductor substrate is removed below respective bottom surfaces of the emitters. Both anode and cathode contacts are attached to the bottom surfaces so as to drive the emitters to emit light from the bottom surfaces. In another embodiment, the upper surface of a semiconductor substrate is bonded to a carrier substrate having through-holes that are aligned with respective top surfaces of the emitters, after which the semiconductor substrate is removed below respective bottom surfaces of the emitters, and the respective bottom surfaces of the emitters are bonded to a heat sink.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: November 14, 2017
    Assignee: APPLE INC.
    Inventors: Chin Han Lin, Kevin A. Sawyer, Neil MacKinnon, Venkataram R. Raju, Weiping Li, Xiaofeng Fan
  • Publication number: 20170324949
    Abstract: Systems, methods, and computer readable media to resolve three dimensional spatial information of cameras used to construct 3D images. Various embodiments perform communication synchronization between a first image capture system and one or more other image capture systems and generate a first flash pulse that projects a light pattern into an environment. An image is captured that includes the light pattern and a modulated optical signal encoded with an identifier of one of the first image capture system and related-camera information. A second flash from another image capture systems may flash at a second time based on the communication synchronization. During the second flash, the first image capture system captures a second image of the environment. Based on the first and second images, the first image capture system determines the orientation of the second image capture system relative to the first image capture system.
    Type: Application
    Filed: May 4, 2016
    Publication date: November 9, 2017
    Inventors: Denis G. Chen, Chin Han Lin
  • Publication number: 20170227416
    Abstract: Optical apparatus includes a primary radiation source, which emits first optical radiation along a first optical axis. A DOE includes at least an entrance surface, upon which the first optical radiation from the primary radiation source is incident, and an exit surface, through which one or more primary diffraction orders of the first optical radiation are emitted from the DOE. At least one secondary radiation source is configured to direct second optical radiation to impinge on the DOE along a second optical axis, which is non-parallel to the first optical axis, causing at least a part of the second optical radiation to be diffracted by the DOE such that one or more secondary diffraction orders of the second optical radiation are emitted through the entrance face of the DOE. At least one detector is configured to sense at least one of the secondary diffraction orders of the second optical radiation.
    Type: Application
    Filed: February 10, 2016
    Publication date: August 10, 2017
    Inventors: Denis G. Chen, Brian S. Medower, Chin Han Lin
  • Publication number: 20160336717
    Abstract: A method for production of an optoelectronic device includes fabricating a plurality of vertical emitters on a semiconductor substrate. Respective top surfaces of the emitters are bonded to a heat sink, after which the semiconductor substrate is removed below respective bottom surfaces of the emitters. Both anode and cathode contacts are attached to the bottom surfaces so as to drive the emitters to emit light from the bottom surfaces. In another embodiment, the upper surface of a semiconductor substrate is bonded to a carrier substrate having through-holes that are aligned with respective top surfaces of the emitters, after which the semiconductor substrate is removed below respective bottom surfaces of the emitters, and the respective bottom surfaces of the emitters are bonded to a heat sink.
    Type: Application
    Filed: February 10, 2016
    Publication date: November 17, 2016
    Inventors: Chin Han Lin, Kevin A. Sawyer, Neil MacKinnon, Venkataram R. Raju, Weiping Li, Xiaofeng Fan
  • Patent number: 8204066
    Abstract: We propose a method for predicting a port number of a NAT equipment according to results of inquiring a STUN server twice in this invention. A network terminal device A in a private network sends an inquiry packet to the STUN server before and after sending a hole punching request, acquires two endpoint mappings of the NAT equipment used respectively in the two inquiries from the STUN server, and delivers the endpoint mappings to another network terminal device B in another private network through a SIP server. The network terminal device B predicts a range of port numbers of the NAT equipment probably used when the hole punching request was sent, according to the endpoint mappings and a port differential of the NAT equipment, and sends packets to the predicted port numbers sequentially until a response packet is received from the network terminal device A. Hence, a connection channel is established.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: June 19, 2012
    Assignee: D-Link Corporation
    Inventors: Yi-Wei Chen, Chin-Han Lin, Ying-Dar Lin, Chien-Chao Tseng
  • Publication number: 20090323559
    Abstract: We propose a method for predicting a port number of a NAT equipment according to results of inquiring a STUN server twice in this invention. A network terminal device A in a private network sends an inquiry packet to the STUN server before and after sending a hole punching request, acquires two endpoint mappings of the NAT equipment used respectively in the two inquiries from the STUN server, and delivers the endpoint mappings to another network terminal device B in another private network through a SIP server. The network terminal device B predicts a range of port numbers of the NAT equipment probably used when the hole punching request was sent, according to the endpoint mappings and a port differential of the NAT equipment, and sends packets to the predicted port numbers sequentially until a response packet is received from the network terminal device A. Hence, a connection channel is established.
    Type: Application
    Filed: August 27, 2008
    Publication date: December 31, 2009
    Applicant: D-Link Corporation
    Inventors: Yi-Wei Chen, Chin-Han Lin, Ying-Dar Lin, Chien-Chao Tseng