Patents by Inventor Chin-Hsiung Ho

Chin-Hsiung Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080194076
    Abstract: The present disclosure provide a method of manufacturing a microelectronic device. The method includes forming a top metal layer on a first substrate, in which the top metal layer has a plurality of interconnect features and a first dummy feature; forming a first dielectric layer over the top metal layer; etching the first dielectric layer in a target region substantially vertically aligned to the plurality of interconnect features and the first dummy feature of the top metal layer; performing a chemical mechanical polishing (CMP) process over the first dielectric layer; and thereafter bonding the first substrate to a second substrate.
    Type: Application
    Filed: February 12, 2007
    Publication date: August 14, 2008
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Fa-Yuan Chang, Tsung-Mu Lai, Kai-Chih Liang, Hua-Shu Wu, Chin-Hsiung Ho, Gwo-Yuh Shiau, Chu-Wei Chang, Ming-Chyi Liu, Yuan-Chih Hsieh, Chia-Shiung Tsai, Nick Y. M. Shen, Ching-Chung Pai
  • Patent number: 6716740
    Abstract: A method for depositing an inter-metal-dielectric layer on a semiconductor substrate by plasma chemical vapor deposition without the layer cracking defect is disclosed. The semiconductor substrate is first heat-treated in the same plasma process chamber to a temperature of at least 300° C. for a length of time sufficient to outgas a surface of the semiconductor substrate. The impurity gases absorbed on the surface of the semiconductor substrate can be effectively outgassed during the heat treatment process such that they are not trapped under an IMD layer deposited in a subsequent plasma deposition process. The method effectively minimizes or eliminates completely the IMD layer cracking defect of the dielectric layer.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: April 6, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Ming Wang, Long-Shang Chuang, Jui-Ping Chuang, Chin-Hsiung Ho, Mei-Yen Li, Chien-Kang Chou
  • Patent number: 6647998
    Abstract: An electrostatic charge-free solvent-type dryer for drying semiconductor wafers after a wet bench process is disclosed in a preferred embodiment and in an alternate embodiment. In the preferred embodiment, the electrostatic charge-free solvent-type dryer is constructed by a tank body, a wafer carrier, an elevator means, a tank cover and a conduit for feeding the flow of solvent vapor. At least one of the tank cover, the conduit for feeding the flow of solvent vapor and the plurality of partition plates is fabricated of a non-electrostatic material such that electrostatic charge is not generated in the flow of solvent vapor. In the alternate embodiment, a deionizer is further provided in the tank cavity for producing a flux of positive ions to neutralize any negative ions that are possibly produced in the flow of solvent vapor.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: November 18, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Jih-Churng Twu, Ming-Dar Guo, Tsung-Chieh Tsai, Sheng-Hsiung Tseng, Wei-Ming You, Yao-Pin Huang, Chia-Chun Cheng, Chin-Hsiung Ho, Ming Te More
  • Patent number: 6555477
    Abstract: A method for preventing or reducing corrosion of copper containing semiconductor features during chemical mechanical polishing (CMP) including providing a semiconductor wafer polishing surface including a copper layer overlying a copper filled anisotropically etched feature; polishing the semiconductor wafer polishing surface according to a first CMP process to remove at least a portion the copper layer to reveal a portion of an underlying barrier/adhesion layer; polishing the semiconductor wafer polishing surface according to a second CMP process including applying a neutralizing solution; polishing the semiconductor wafer polishing surface according to a third CMP process including applying a copper corrosion inhibitor solution; and, polishing the semiconductor wafer polishing surface according to at least a fourth CMP process to remove a remaining portion of the underlying barrier/adhesion layer.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: April 29, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Fa Lu, Chin-Hsiung Ho, Mei-Ling Chen, Liang-Kun Huang
  • Publication number: 20030068902
    Abstract: A method for depositing an inter-metal-dielectric layer on a semiconductor substrate by plasma chemical vapor deposition without the layer cracking defect is disclosed. The semiconductor substrate is first heat-treated in the same plasma process chamber to a temperature of at least 300° C. for a length of time sufficient to outgas a surface of the semiconductor substrate. The impurity gases absorbed on the surface of the semiconductor substrate can be effectively outgassed during the heat treatment process such that they are not trapped under an IMD layer deposited in a subsequent plasma deposition process. The method effectively minimizes or eliminates completely the IMD layer cracking defect of the dielectric layer.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 10, 2003
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Ming Wang, Long-Shang Chuang, Jui-Ping Chuang, Chin-Hsiung Ho, Mei-Yen Li, Chien-Kang Chou
  • Publication number: 20020195130
    Abstract: An electrostatic charge-free solvent-type dryer for drying semiconductor wafers after a wet bench process is disclosed in a preferred embodiment and in an alternate embodiment. In the preferred embodiment, the electrostatic charge-free solvent-type dryer is constructed by a tank body, a wafer carrier, an elevator means, a tank cover and a conduit for feeding the flow of solvent vapor. At least one of the tank cover, the conduit for feeding the flow of solvent vapor and the plurality of partition plates is fabricated of a non-electrostatic material such that electrostatic charge is not generated in the flow of solvent vapor. In the alternate embodiment, a deionizer is further provided in the tank cavity for producing a flux of positive ions to neutralize any negative ions that are possibly produced in the flow of solvent vapor.
    Type: Application
    Filed: June 20, 2001
    Publication date: December 26, 2002
    Applicant: Taiwan Semiconductor Manufactoring Co., Ltd.
    Inventors: Jih-Churng Twu, Ming-Dar Guo, Tsung-Chieh Tsai, Sheng-Hsiung Tseng, Wei-Ming You, Yao-Pin Huang, Chia-Chun Cheng, Chin-Hsiung Ho, Ming Te More
  • Patent number: 6207538
    Abstract: A method for forming both n and p wells in a semiconductor substrate using a single photolithography masking step, a non-conformal oxide layer and a chemical-mechanical polish step. A screen oxide layer is formed on a semiconductor substrate. A barrier layer is formed on the screen oxide layer. The barrier layer is patterned to form a first opening in the barrier layer over regions of the substrate where first wells will be formed. We implant impurities of a first conductivity type into the substrate to form first wells. In a key step, a non-conformal oxide layer is formed over the first well regions and the barrier layer. It is critical that the non-conformal oxide layer formed using a HDPCVD process. The non-conformal oxide layer is chemical-mechanical polished stopping at the barrier layer. The barrier layer is removed using a selective etch, to form second openings in the remaining non-conformal oxide layer over areas where second well will be formed in the substrate.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: March 27, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kuo-Hua Pan, Chu-Wei Hu, Chung-Te Lin, Chin-Hsiung Ho
  • Patent number: 6103581
    Abstract: A method for fabricating shallow trench isolation stricture wherein a surface oxide layer and a polycrystalline silicon buffer layer are formed on a semiconductor body. Openings are formed through the layers and into the body that constitute trenches. A lining oxide layer is formed on the trench and buffer layer surfaces. A thick oxide layer is deposited on the body to fill the trench, and the layer planarized by chemical-mechanical polishing. The exposed portions of the buffer layer are removed and the horizontal surface oxide layer portions removed by anisotropic etching.
    Type: Grant
    Filed: November 27, 1998
    Date of Patent: August 15, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chung-Te Lin, Chin-Hsiung Ho, Hann-Huei Tsai
  • Patent number: 6083824
    Abstract: A method of forming borderless contacts and vias is disclosed. Borders which are conventionally provided in aligning contacts and vias to device and/or metal regions in a semiconductor device take up too much valuable real estate on semiconductor substrates, and hence reduce productivity of the products. By employing a hard-mask of this invention, and a specific sequence of process steps, alignment can be achieved without the need for borders. First, a thin nitride layer is deposited on an insulating layer formed over a substructure of a substrate having device and/or metal regions. The hard-mask is patterned with metal line openings, and a photoresist layer is formed with contact or via pattern over the already patterned hard-mask. The contact/via openings are etched into the dielectric layer until the substructure is reached. The hole openings are filled plug metal and then partially etched back, leaving a plug in the hole opening.
    Type: Grant
    Filed: July 13, 1998
    Date of Patent: July 4, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chao-Chieh Tsai, Chin-Hsiung Ho, Yuan-Chen Sun
  • Patent number: 6063695
    Abstract: A process for the formation of deep clear laser marks on silicon wafers is described. Tall ridges of material which is erupted from the wafer surface during the deep laser penetration form adjacent to the marks. These ridges are of the order of 3 to 15 microns in height and must be removed prior to subsequent wafer processing to avoid fragmentation causing scratches and particulate contamination. The process of the invention deposits a non-conformal layer of photoresist or other flowable material on the wafer. The peaks of the ridges protrude above the surface of the conformal layer be a significant amount and are then etched away using an aqueous silicon etch. The non-conformal layer protects the wafer surface from the silicon etch so that only the ridges are removed. After the ridges are etched, the non-conformal layer is removed leaving residual ridges of a height less than or equal to the thickness of the conformal layer.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: May 16, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chung-Te Lin, Chin-Hsiung Ho, Hsueh-Liang Chiu, So-Wein Kuo
  • Patent number: 6037204
    Abstract: A method for forming salicide contacts and polycide conductive lines in integrated circuits is described which employs the ion implantation of both silicon and arsenic into polysilicon structures and into source/drain MOSFET elements is described. The method is effective in reducing gate-to-source/drain bridging in the manufacture of sub-micron CMOS integrated circuits and improving the conductivity of sub-micron wide polycide lines. Silicon is implanted into the polysilicon and into the source/drain surfaces forming a amorphized surface layer. Next a low dose, low energy arsenic implant is administered into the amorphized layer. The low dose shallow arsenic implant in concert with the amorphized layer initiates an equalized formation of titanium silicide over both NMOS and PMOS devices in CMOS integrated circuits without degradation of the PMOS devices. Amorphization by the electrically neutral silicon ions permits the use of a lower dose of arsenic than would be required if arsenic alone were implanted.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: March 14, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Shou-Zen Chang, Chaochieh Tsai, Chin-Hsiung Ho, Cheng Kun Lin
  • Patent number: 6020255
    Abstract: A dual damascene process is disclosed for forming contact and via interconnects without borders. A nitride layer is first formed on a dielectric layer to function as a hard-mask. Metal line trench is first etched into the nitride layer and then into the dielectric layer. Then, a second photoresist layer is used to pattern contact or via hole over line trench opening and the dielectric layer is further etched through the line trench into the dielectric layer until the substructure of the substrate is reached. It is disclosed that by using the nitride layer as a hard-mask, the registration or alignment tolerance between the contact/via hole pattern and the metal line pattern can be relaxed substantially and not use a border as is conventionally practiced in order to assure proper registration between the patterns. The borderless interconnect is achieved by filling the composite line opening and the hole opening with metal and chemical mechanical polishing.
    Type: Grant
    Filed: July 13, 1998
    Date of Patent: February 1, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chao-Chieh Tsai, Chin-Hsiung Ho, Yuan-Chen Sun
  • Patent number: 5821153
    Abstract: The present invention provides a method of manufacturing a high nitrogen (N) content oxynitride layer 34A 34B over field oxide regions. The oxynitride layer 34A 34B prevents subsequent etches from forming recesses in the field oxide regions 30 and planarizes the surface. The method begins by forming a field oxide region 30 an isolation area in the substrate 22. A high N content oxynitride protection layer 34A 34B (an etch barrier) is then formed surrounding (over and under) the field oxide layer 30. The high N content oxynitride protection layer 34A 34B is formed by heating (e.g., annealing) the substrate in a gas environment comprising ammonia. The high N content oxynitride layer is preferably formed by rapidly thermally annealing the substrate at temperature between about 825.degree. and 875 .degree. C. in an ammonia containing environment with a partial pressure of between about 0.5 and 1.2 kg/cm.sup.2 .
    Type: Grant
    Filed: December 9, 1996
    Date of Patent: October 13, 1998
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chaochieh Tsai, Chin-Hsiung Ho
  • Patent number: 5674775
    Abstract: The present invention provides a method of manufacturing a trench having rounded top corners 28 in a substrate. The rounded top edges allow the formation of a gate oxide with a uniform thickness around the trench thereby reducing parasitic field FET problems. The method begins by forming a pad layer 14 over a semiconductor substrate 10. Next, an insulating layer 18 composed of silicon nitride is formed over the pad layer 14. A first opening 19 is formed in the insulating layer 18 and the pad layer 14 exposing the surface of the substrate. The first opening is defined by sidewalls of the pad layer 14 and of the insulating layer 18. An etch buffer layer 20 composed of polysilicon is formed over the resultant surface. In one etch step, the etch buffer layer 20 is anisotropically etched forming spacers 22 on the sidewalls of the pad layer 14 and of the insulating layer 18.
    Type: Grant
    Filed: February 20, 1997
    Date of Patent: October 7, 1997
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Hsiung Ho, Chia-Shiung Tsai, Cheng-Kai Liu, Chaochieh Tsai