Patents by Inventor Chin Wei Wu

Chin Wei Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250056901
    Abstract: A cell module is provided. The cell module includes a first substrate; a second substrate disposed opposite to the first substrate; a cell unit disposed between the first substrate and the second substrate; a first thermosetting resin layer disposed between the cell unit and the first substrate; a crosslinked polymer layer disposed between the cell unit and the first thermosetting resin layer; and a second thermosetting resin layer disposed between the cell unit and the second substrate. The crosslinked polymer layer includes a crosslinked polymer, and the crosslinked polymer has a crosslinking degree of from 35.4 to 67.4%.
    Type: Application
    Filed: October 28, 2024
    Publication date: February 13, 2025
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chiou-Chu LAI, Chun-Wei SU, Yi-Chun LIU, Hsin-Hsin HSIEH, Hsin-Chung WU, En-Yu PAN, Chin-Ping HUANG, Zih-Yu FANG
  • Patent number: 12220734
    Abstract: An information handling system stylus self-cleans a magnet garage arrangement with a garage variable magnet having a first magnetic attraction when the stylus is proximate and information handling system garage and a second magnetic attraction when the stylus is distal the information handling system garage. The second magnetic attraction has a reduced attractive force at the stylus housing outer surface to discourage attraction of contaminants that might scratch or otherwise damage the housing.
    Type: Grant
    Filed: October 26, 2023
    Date of Patent: February 11, 2025
    Assignee: Dell Products L.P.
    Inventors: Kuan-Hung Chou, Yuan-Wei Chang, David W. Grunow, Yi-Chung Chu, Chin-Chung Wu, Ai-Wei Liu
  • Publication number: 20250029978
    Abstract: An electrode for a lithium-ion battery is provided, which comprises: a current collector; and an electrode material layer disposed on the current collector, wherein the electrode material layer comprises an anode material and a binder, the binder is pectin, its derivative or a combination thereof, and the anode material is selected from the group consisting of lithium vanadium oxide, lithium titanium oxide, lithium iron oxide, graphite, and a combination thereof. In addition, a lithium-ion battery comprising the aforesaid electrode is also provided.
    Type: Application
    Filed: July 17, 2023
    Publication date: January 23, 2025
    Inventors: Maw-Kuan WU, Yu-Hsuan SU, Chin-Yi CHUNG, Yan-Reui CHEN, Feng-Yu WU, Po-Wei CHI, Phillip M. WU
  • Patent number: 10324034
    Abstract: A self-referencing localized plasmon resonance sensing device and a system thereof are disclosed. The reference optical waveguide element is modified with a noble metal nanoparticle layer. The sensing optical waveguide element is modified with a noble metal nanoparticle layer, which is further modified with a recognition unit. The incident light is guided into the reference and the sensing optical waveguide elements to respectively generate localized plasmon resonance sensor signals. The reference and the sensing optical waveguide elements respectively have a calibration slope. The processor utilizes the calibration slopes to regulate the second difference generated by detecting with the sensing optical waveguide element. The processor utilizes a difference between the first difference, which is generated by detecting with the reference optical waveguide element, and the regulated second difference to obtain a sensor response.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: June 18, 2019
    Assignee: National Chung Cheng University
    Inventors: Lai-Kwan Chau, Chin-Wei Wu, Chang-Yue Chiang, Chien-Hsing Chen
  • Publication number: 20190013204
    Abstract: A method of fabricating a buried word line includes forming a trench in a substrate. Next, a deposition process is performed to form a silicon layer on a sidewall and a bottom at the inner side of the trench. After the deposition process, a gate dielectric layer is formed in the trench. Finally, a conductive layer is formed to fill in the trench.
    Type: Application
    Filed: July 26, 2017
    Publication date: January 10, 2019
    Inventors: Tien-Chen Chan, Ger-Pin Lin, Tsuo-Wen Lu, Chin-Wei Wu, Yu-Chun Wang, Shu-Yen Chan
  • Patent number: 10056288
    Abstract: A semiconductor device includes a semiconductor substrate having a gate trench penetrating through an active area and a trench isolation region surrounding the active area. The gate trench exposes a sidewall of the active area and a sidewall of the trench isolation region. The sidewall of the trench isolation region includes a void. A first gate dielectric layer conformally covers the sidewall of the active area and the sidewall of the trench isolation region. The void in the sidewall of the trench isolation region is filled with the first gate dielectric layer. A second gate dielectric layer is grown on the sidewall of the active area. A gate is embedded in the gate trench.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: August 21, 2018
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Tsuo-Wen Lu, Chin-Wei Wu, Tien-Chen Chan, Ger-Pin Lin, Shu-Yen Chan
  • Patent number: 9394320
    Abstract: A method for fixing metal onto a surface of the substrate. The present method includes steps of: providing a substrate and a mercaptoalkylsilatrane compound; dissolving the mercaptoalkylsilatrane compound in a solvent; performing a condensation reaction of the substrate with and the dissolved mercaptoalkylsilatrane compound to complete the surface modification of the substrate; and performing a covalent bonding process to metal with the mercaptoalkylsilatrane compound already modified onto the surface of the substrate to fix the metal onto the surface of the substrate.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: July 19, 2016
    Assignee: National Chung Cheng University
    Inventors: Lai-Kwan Chau, Wen-Hao Chen, Yen-Ta Tseng, Chin-Wei Wu, Chao-Wen Chen
  • Publication number: 20160169797
    Abstract: A self-referencing localized plasmon resonance sensing device and a system thereof are disclosed. The reference optical waveguide element is modified with a noble metal nanoparticle layer. The sensing optical waveguide element is modified with a noble metal nanoparticle layer, which is further modified with a recognition unit. The incident light is guided into the reference and the sensing optical waveguide elements to respectively generate localized plasmon resonance sensor signals. The reference and the sensing optical waveguide elements respectively have a calibration slope. The processor utilizes the calibration slopes to regulate the second difference generated by detecting with the sensing optical waveguide element. The processor utilizes a difference between the first difference, which is generated by detecting with the reference optical waveguide element, and the regulated second difference to obtain a sensor response.
    Type: Application
    Filed: February 19, 2016
    Publication date: June 16, 2016
    Inventors: Lai-Kwan CHAU, Chin-Wei WU, Chang-Yue CHIANG, Chien-Hsing CHEN
  • Publication number: 20140295075
    Abstract: A method for fixing metal onto a surface of the substrate. The present method includes steps of: providing a substrate and a mercaptoalkylsilatrane compound; dissolving the mercaptoalkylsilatrane compound in a solvent; performing a condensation reaction of the substrate with and the dissolved mercaptoalkylsilatrane compound to complete the surface modification of the substrate; and performing a covalent bonding process to metal with the mercaptoalkylsilatrane compound already modified onto the surface of the substrate to fix the metal onto the surface of the substrate.
    Type: Application
    Filed: March 17, 2014
    Publication date: October 2, 2014
    Applicant: National Chung Cheng University
    Inventors: Lai-Kwan Chau, Wen-Hao Chen, Yen-Ta Tseng, Chin-Wei Wu, Chao-Wen Chen
  • Patent number: 8192251
    Abstract: A pressure control system of a wafer polishing apparatus includes a main input air pressure regulator, an air branch conduit, a plurality of first pipes, a plurality of auxiliary air pressure regulators, a plurality of second pipes, and a plurality of air pressure controlling devices. The air branch conduit is connected with the main input air pressure regulator. The first pipes are connected between the air branch conduit and the auxiliary air pressure regulators. The second pipes are connected between the auxiliary air pressure regulators and the air pressure controlling devices. Accordingly, the air pressure controlling devices can control the pressure outputted from a polishing head of the wafer polishing apparatus to a surface of a wafer.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: June 5, 2012
    Assignee: Inotera Memories, Inc.
    Inventors: Yueh Cheng Hsueh, Chin Wei Wu, Sheng-Feng Hung
  • Publication number: 20100203807
    Abstract: A pressure control system of a wafer polishing apparatus includes a main input air pressure regulator, an air branch conduit, a plurality of first pipes, a plurality of auxiliary air pressure regulators, a plurality of second pipes, and a plurality of air pressure controlling devices. The air branch conduit is connected with the main input air pressure regulator. The first pipes are connected between the air branch conduit and the auxiliary air pressure regulators. The second pipes are connected between the auxiliary air pressure regulators and the air pressure controlling devices. Accordingly, the air pressure controlling devices can control the pressure outputted from a polishing head of the wafer polishing apparatus to a surface of a wafer.
    Type: Application
    Filed: July 8, 2009
    Publication date: August 12, 2010
    Inventors: Yueh Cheng Hsueh, Chin Wei Wu, Sheng-Feng Hung