Patents by Inventor Ching-Fu Horng

Ching-Fu Horng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7523551
    Abstract: A manufacturing method of a multi-layer circuit board embedded with a passive component includes the steps of: providing a conductive foil which has one or more pairs of metal protruding points; connecting a passive element to the corresponding metal protruding points; providing a board having a core substrate with organic insulation layer on a core substrate; stacking the conductive foil and the board, wherein the passive component is embedded in the organic insulation layer and patterning on the conductive foil.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: April 28, 2009
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ching-Fu Horng, Yung-Hui Wang
  • Patent number: 7338892
    Abstract: A circuit carrier including a core layer, a passive component, a plurality of dielectric layers, and a plurality of circuit layers is provided. The core layer has a first surface and a second surface. In addition, the core layer has a hole, and the passive component is embedded in the hole of the core layer. Furthermore, the circuit layers and the dielectric layers are alternately disposed on the first surface and the second surface of the core layer respectively. The dielectric layers have a plurality of conductive vias, and at least one of the circuit layers is electrically connected to the passive component through the conductive vias. As described above, the electrical performance of the circuit carrier is enhanced. Furthermore, a manufacturing process of the circuit carrier mentioned above is also provided.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: March 4, 2008
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Yung-Hui Wang, Ching-Fu Horng
  • Publication number: 20070287281
    Abstract: A circuit carrier including a core layer, a passive component, a plurality of dielectric layers, and a plurality of circuit layers is provided. The core layer has a first surface and a second surface. In addition, the core layer has a hole, and the passive component is embedded in the hole of the core layer. Furthermore, the circuit layers and the dielectric layers are alternately disposed on the first surface and the second surface of the core layer respectively. The dielectric layers have a plurality of conductive vias, and at least one of the circuit layers is electrically connected to the passive component through the conductive vias. As described above, the electrical performance of the circuit carrier is enhanced. Furthermore, a manufacturing process of the circuit carrier mentioned above is also provided.
    Type: Application
    Filed: June 9, 2006
    Publication date: December 13, 2007
    Inventors: Yung-Hui Wang, Ching-Fu Horng
  • Patent number: 7112523
    Abstract: A method of forming a plurality of bumps over a wafer mainly comprises the steps of providing a wafer having a plurality of bonding pads, forming an adhesive layer on the surface of the wafer to cover the bonding pads, patterning the adhesive layer to expose the bonding pads to form a patterned adhesive layer, forming a barrier layer and a wetting layer on the patterned adhesive layer and the surface of the wafer, removing the barrier layer and the wetting layer not covering the patterned adhesive layer, forming a plurality of bumps on the patterned wetting layer, and reflowing the bumps.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: September 26, 2006
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Ching-Fu Horng
  • Patent number: 7091121
    Abstract: A bumping process mainly comprises the following steps. Initially, a wafer having a plurality of bonding pads and a passivation layer, which exposes the bonding pads, is provided. Next, a first dielectric layer is disposed on the wafer so as to form a plurality of first openings and second openings. The first openings and the second openings expose the bonding pads and the passivation layer respectively. Afterward, a patterned first electrically conductive layer is formed on the first dielectric layer, the bonding pads and the passivation layer exposed out of the first dielectric layer through the second openings. Then, a second patterned conductive layer is formed directly on the first patterned conductive layer.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: August 15, 2006
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Ching-Fu Horng
  • Publication number: 20060059682
    Abstract: A manufacturing method of a multi-layer circuit board embedded with a passive component includes the steps of: providing a conductive foil which has one or more pairs of metal protruding points; connecting a passive element to the corresponding metal protruding points; providing a board having a core substrate with organic insulation layer on a core substrate; stacking the conductive foil and the board, wherein the passive component is embedded in the organic insulation layer and patterning on the conductive foil.
    Type: Application
    Filed: July 18, 2005
    Publication date: March 23, 2006
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Ching-Fu Horng, Yung-Hui Wang
  • Publication number: 20040266163
    Abstract: A bumping process mainly comprises the following steps. Initially, a wafer having a plurality of bonding pads and a passivation layer, which exposes the bonding pads, is provided. Next, a first dielectric layer is disposed on the wafer so as to form a plurality of first openings and second openings. The first openings and the second openings expose the bonding pads and the passivation layer respectively. Afterward, a patterned first electrically conductive layer is formed on the first dielectric layer, the bonding pads and the passivation layer exposed out of the first dielectric layer through the second openings. Then, a second patterned conductive layer is formed directly on the first patterned conductive layer.
    Type: Application
    Filed: January 9, 2004
    Publication date: December 30, 2004
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventor: Ching-Fu Horng
  • Publication number: 20040266161
    Abstract: A method of forming a plurality of bumps over a wafer mainly comprises the steps of providing a wafer having a plurality of bonding pads, forming an adhesive layer on the surface of the wafer to cover the bonding pads, patterning the adhesive layer to expose the bonding pads to form a patterned adhesive layer, forming a barrier layer and a wetting layer on the patterned adhesive layer and the surface of the wafer, removing the barrier layer and the wetting layer not covering the patterned adhesive layer, forming a plurality of bumps on the patterned wetting layer, and reflowing the bumps.
    Type: Application
    Filed: January 9, 2004
    Publication date: December 30, 2004
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventor: Ching-Fu Horng
  • Patent number: 6692581
    Abstract: A solder paste for fabricating bumps includes a flux and metallic alloy powder. The metallic alloy powder includes a plurality of low eutectic metallic alloy granules, and the size of these metallic alloy granules is 20-60 &mgr;m and the average size of the metallic granules is 35 &mgr;m to 45 &mgr;m.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: February 17, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Ching-Fu Horng, Shih-Kuang Chen, Shyh-Ing Wu, Chun-Hung Lin, Yung-Chi Lee, Yu-Chen Chou, Tsung-Hua Wu, Su Tao
  • Publication number: 20030164204
    Abstract: A solder paste for fabricating bumps includes a flux and metallic alloy powder. The metallic alloy powder includes a plurality of low eutectic metallic alloy granules, and the size of these metallic alloy granules is 20-60 &mgr;m and the average size of the metallic granules is 35 &mgr;m to 45 &mgr;m.
    Type: Application
    Filed: February 20, 2003
    Publication date: September 4, 2003
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Ching-Fu Horng, Shih-Kuang Chen, Shyh-Ing Wu, Chun-Hung Lin, Yung-Chi Lee, Yu-Chen Chou, Tsung-Hua Wu, Su Tao