Patents by Inventor Ching-Hwanq Su

Ching-Hwanq Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11502185
    Abstract: A method includes forming a dummy gate stack over a semiconductor region, removing the dummy gate stack to form a trench between gate spacers, forming a replacement gate dielectric extending into the trench, and forming a replacement gate electrode on the replacement gate dielectric. The forming the replacement gate electrode includes depositing a metal-containing layer. The depositing the metal-containing layer includes depositing a lower layer having a first average grain size, and depositing an upper layer over the lower layer. The lower layer and the upper layer are formed of a same material, and the upper layer has a second average grain size greater than the first average grain size. Source and drain regions are formed on opposing sides of the replacement gate electrode.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: November 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ru-Shang Hsiao, Ching-Hwanq Su, Pin Chia Su, Ying Hsin Lu, Ling-Sung Wang
  • Publication number: 20220359728
    Abstract: A method includes forming a dummy gate stack over a semiconductor region, removing the dummy gate stack to form a trench between gate spacers, forming a replacement gate dielectric extending into the trench, and forming a replacement gate electrode on the replacement gate dielectric. The forming the replacement gate electrode includes depositing a metal-containing layer. The depositing the metal-containing layer includes depositing a lower layer having a first average grain size, and depositing an upper layer over the lower layer. The lower layer and the upper layer are formed of a same material, and the upper layer has a second average grain size greater than the first average grain size. Source and drain regions are formed on opposing sides of the replacement gate electrode.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 10, 2022
    Inventors: Ru-Shang Hsiao, Ching-Hwanq Su, Pin Chia Su, Ying Hsin Lu, Ling-Sung Wang
  • Patent number: 11476351
    Abstract: A method includes forming a dummy gate stack over a fin protruding from a semiconductor substrate, forming gate spacers on sidewalls of the dummy gate stack, forming source/features over portions of the fin, forming a gate trench between the gate spacers, which includes trimming top portions of the gate spacers to form a funnel-like opening in the gate trench, and forming a metal gate structure in the gate trench. A semiconductor structure includes a fin protruding from a substrate, a metal gate structure disposed over the fin, gate spacers disposed on sidewalls of the metal gate structure, where a top surface of each gate spacer is angled toward the semiconductor fin, a dielectric layer disposed over the top surface of each gate spacer, and a conductive feature disposed between the gate spacers to contact the metal gate structure, where sidewalls of the conductive feature contact the dielectric layer.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: October 18, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ru-Shang Hsiao, Ching-Hwanq Su, Pin Chia Su, Ying Hsin Lu, I-Shan Huang
  • Publication number: 20220262685
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Patent number: 11404312
    Abstract: A method includes forming an opening in a dielectric layer, depositing a seed layer in the opening, wherein first portions of the seed layer have a first concentration of impurities, exposing the first portions of the seed layer to a plasma, wherein after exposure to the plasma the first portions have a second concentration of impurities that is less than the first concentration of impurities, and filling the opening with a conductive material to form a conductive feature. In an embodiment, the seed layer includes tungsten, and the conductive material includes tungsten. In an embodiment, the impurities include boron.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: August 2, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chiang Wu, Hsueh Wen Tsau, Chia-Ching Lee, Cheng-Lung Hung, Ching-Hwanq Su
  • Publication number: 20220216307
    Abstract: A method includes forming a gate dielectric comprising a portion extending on a semiconductor region, forming a barrier layer comprising a portion extending over the portion of the gate dielectric, forming a work function tuning layer comprising a portion over the portion of the barrier layer, doping a doping element into the work function tuning layer, removing the portion of the work function tuning layer, thinning the portion of the barrier layer, and forming a work function layer over the portion of the barrier layer.
    Type: Application
    Filed: March 28, 2022
    Publication date: July 7, 2022
    Inventors: Hsin-Yi Lee, Ya-Huei Li, Da-Yuan Lee, Ching-Hwanq Su
  • Publication number: 20220216201
    Abstract: A method includes forming a first semiconductor fin in a substrate, forming a metal gate structure over the first semiconductor fin, removing a portion of the metal gate structure to form a first recess in the metal gate structure that is laterally separated from the first semiconductor fin by a first distance, wherein the first distance is determined according to a first desired threshold voltage associated with the first semiconductor fin, and filling the recess with a dielectric material.
    Type: Application
    Filed: March 24, 2022
    Publication date: July 7, 2022
    Inventors: Chung-Chiang Wu, Shih-Hang Chiu, Chih-Chang Hung, I-Wei Yang, Shu-Yuan Ku, Cheng-Lung Hung, Da-Yuan Lee, Ching-Hwanq Su
  • Publication number: 20220216317
    Abstract: A semiconductor device includes a channel component of a transistor and a gate component disposed over the channel component. The gate component includes: a dielectric layer, a first work function metal layer disposed over the dielectric layer, a fill-metal layer disposed over the first work function metal layer, and a second work function metal layer disposed over the fill-metal layer.
    Type: Application
    Filed: March 21, 2022
    Publication date: July 7, 2022
    Inventors: Ru-Shang Hsiao, Ching-Hwanq Su, Pohan Kung, Ying Hsin Lu, I-Shan Huang
  • Publication number: 20220165728
    Abstract: A gate structure includes a gate dielectric layer, a work function layer, a metal layer, and a barrier layer. The work function layer is surrounded by the gate dielectric layer. The metal layer is disposed over the work function layer. The barrier layer is surrounded by the work function layer and surrounds the metal layer. The barrier layer includes fluorine and silicon, or fluorine and aluminum. The barrier layer is a tri-layered structure.
    Type: Application
    Filed: February 8, 2022
    Publication date: May 26, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ji-Cheng Chen, Ching-Hwanq Su, Kuan-Ting Liu, Shih-Hang Chiu
  • Patent number: 11322411
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: May 3, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Patent number: 11309217
    Abstract: A method of making a semiconductor device that includes forming a dielectric stack over a substrate and patterning a contact region in the dielectric stack, the contact region having side portions and a bottom portion that exposes the substrate. The method also includes forming a dielectric barrier layer in the contact region to cover the side portions and forming a conductive blocking layer to cover the dielectric barrier layer, the dielectric stack, and the bottom portion of the contact region. The method can include forming a conductive layer over the conductive blocking layer and forming a conductive barrier layer over the conductive layer. The method can further include forming a silicide region in the substrate beneath the conductive layer.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: April 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ya-Huei Li, Li-Wei Chu, Yu-Hsiang Liao, Hung-Yi Huang, Chih-Wei Chang, Ching-Hwanq Su
  • Patent number: 11309213
    Abstract: A method for manufacturing a semiconductor structure includes following operations. A sacrificial layer is formed over the conductive layer, wherein the sacrificial layer includes a first sacrificial portion over the first conductive portion, and a second sacrificial portion over the second conductive portion, and a first thickness of the first sacrificial portion is larger than a second thickness of the second sacrificial portion. The first sacrificial portion and the second sacrificial portion of the sacrificial layer, and the second conductive portion of the conductive layer are removed.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: April 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Hsiang Liao, Ya-Huei Li, Li-Wei Chu, Chun-Wen Nieh, Hung-Yi Huang, Chih-Wei Chang, Ching-Hwanq Su
  • Patent number: 11302582
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Patent number: 11289480
    Abstract: A method includes forming a first semiconductor fin in a substrate, forming a metal gate structure over the first semiconductor fin, removing a portion of the metal gate structure to form a first recess in the metal gate structure that is laterally separated from the first semiconductor fin by a first distance, wherein the first distance is determined according to a first desired threshold voltage associated with the first semiconductor fin, and filling the recess with a dielectric material.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: March 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chiang Wu, Shih-Hang Chiu, Chih-Chang Hung, I-Wei Yang, Shu-Yuan Ku, Cheng-Lung Hung, Da-Yuan Lee, Ching-Hwanq Su
  • Patent number: 11289578
    Abstract: A method includes forming a gate dielectric comprising a portion extending on a semiconductor region, forming a barrier layer comprising a portion extending over the portion of the gate dielectric, forming a work function tuning layer comprising a portion over the portion of the barrier layer, doping a doping element into the work function tuning layer, removing the portion of the work function tuning layer, thinning the portion of the barrier layer, and forming a work function layer over the portion of the barrier layer.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: March 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Yi Lee, Ya-Huei Li, Da-Yuan Lee, Ching-Hwanq Su
  • Patent number: 11282934
    Abstract: A semiconductor device includes a channel component of a transistor and a gate component disposed over the channel component. The gate component includes: a dielectric layer, a first work function metal layer disposed over the dielectric layer, a fill-metal layer disposed over the first work function metal layer, and a second work function metal layer disposed over the fill-metal layer.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: March 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ru-Shang Hsiao, Ching-Hwanq Su, Pohan Kung, Ying Hsin Lu, I-Shan Huang
  • Patent number: 11270994
    Abstract: A gate structure includes a gate dielectric layer, a work function layer, a metal layer, and a barrier layer. The work function layer is on the gate dielectric layer. The metal layer is over the work function layer. The barrier layer is sandwiched between the metal layer and the work function layer. The barrier layer includes silicon or aluminum.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: March 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ji-Cheng Chen, Ching-Hwanq Su, Kuan-Ting Liu, Shih-Hang Chiu
  • Publication number: 20220059412
    Abstract: Embodiments described herein relate to a method for patterning a doping layer, such as a lanthanum containing layer, used to dope a high-k dielectric layer in a gate stack of a FinFET device for threshold voltage tuning. A blocking layer may be formed between the doping layer and a hard mask layer used to pattern the doping layer. In an embodiment, the blocking layer may include or be aluminum oxide (AlOx). The blocking layer can prevent elements from the hard mask layer from diffusing into the doping layer, and thus, can improve reliability of the devices formed. The blocking layer can also improve a patterning process by reducing patterning induced defects.
    Type: Application
    Filed: November 8, 2021
    Publication date: February 24, 2022
    Inventors: Kun-Yu Lee, Huicheng Chang, Che-Hao Chang, Ching-Hwanq Su, Weng Chang, Xiong-Fei Yu
  • Patent number: 11222818
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a fin structure over a semiconductor substrate and forming a gate stack over the fin structure. The method also includes forming an epitaxial structure over the fin structure, and the epitaxial structure is adjacent to the gate stack. The method further includes forming a dielectric layer over the epitaxial structure and forming an opening in the dielectric layer to expose the epitaxial structure. In addition, the method includes applying a metal-containing material on the epitaxial structure while the epitaxial structure is heated so that a portion of the epitaxial structure is transformed to form a metal-semiconductor compound region.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: January 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Hsiang Chao, Min-Hsiu Hung, Chun-Wen Nieh, Ya-Huei Li, Yu-Hsiang Liao, Li-Wei Chu, Kan-Ju Lin, Kuan-Yu Yeh, Chi-Hung Chuang, Chih-Wei Chang, Ching-Hwanq Su, Hung-Yi Huang, Ming-Hsing Tsai
  • Publication number: 20210367076
    Abstract: Semiconductor device structures having gate structures with tunable threshold voltages are provided. Various geometries of device structure can be varied to tune the threshold voltages. In some examples, distances from tops of fins to tops of gate structures can be varied to tune threshold voltages. In some examples, distances from outermost sidewalls of gate structures to respective nearest sidewalls of nearest fins to the respective outermost sidewalls (which respective gate structure overlies the nearest fin) can be varied to tune threshold voltages.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Inventors: Chung-Chiang Wu, Wei-Chin Lee, Shih-Hang Chiu, Chia-Ching Lee, Hsueh Wen Tsau, Cheng-Yen Tsai, Cheng-Lung Hung, Da-Yuan Lee, Ching-Hwanq Su