Patents by Inventor CHING JU YANG

CHING JU YANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 11887929
    Abstract: An interfacial layer is provided that binds a hydrophilic interlayer dielectric to a hydrophobic gap-filling dielectric. The hydrophobic gap-filling dielectric extends over and fill gaps between devices in an array of devices disposed between two metal interconnect layers over a semiconductor substrate and is the product of a flowable CVD process. The interfacial layer provides a hydrophilic upper surface to which the interlayer dielectric adheres. Optionally, the interfacial layer is also the product of a flowable CVD process. Alternatively, the interfacial layer may be silicon nitride or another dielectric that is hydrophilic. The interfacial layer may have a wafer contact angle (WCA) intermediate between a WCA of the hydrophobic dielectric and a WCA of the interlayer dielectric.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: January 30, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsing-Lien Lin, Chin-Wei Liang, Hsun-Chung Kuang, Ching Ju Yang
  • Publication number: 20230345786
    Abstract: An interconnect structure includes at least a first interconnect element and a second interconnect element. A conductive pad layer is disposed over, and electrically coupled to, the first interconnect element. A capping layer is disposed over the conductive pad layer. The capping layer includes titanium nitride. A dielectric layer is disposed over the capping layer. A conductive contact extends vertically through at least a first portion of the dielectric layer and the capping layer. The conductive contact is coupled to the first interconnect element through the conductive pad layer. A conductive via extends vertically through at least a second portion of the dielectric layer. The conductive via is coupled to the second interconnect element.
    Type: Application
    Filed: August 18, 2022
    Publication date: October 26, 2023
    Inventors: Ching Ju Yang, Yao-Wen Chang, Chih-Chung Lai
  • Publication number: 20230270024
    Abstract: The present disclosure is directed towards an integrated chip including a first memory cell overlying a substrate. The first memory cell comprises a first data storage layer. A second memory cell is adjacent to the first memory cell. A dielectric layer is disposed laterally between the first memory cell and the second memory cell. An air gap is disposed within the dielectric layer. The air gap is spaced laterally between the first memory cell and the second memory cell.
    Type: Application
    Filed: February 22, 2022
    Publication date: August 24, 2023
    Inventors: Ching Ju Yang, Huan-Chieh Chen, Yao-Wen Chang
  • Publication number: 20230255125
    Abstract: A method for forming a semiconductor memory structure include forming a pillar structure. The pillar structure includes a first conductive layer, a second conductive layer and a data storage material layer between the first and second conducive layers. A sidewall of the first conductive layer, a sidewall of the data storage layer and a sidewall of the second conductive layer are exposed. An oxygen-containing plasma treatment is performed on the pillar structure to form hydrophilic surfaces of the sidewall of the first conductive layer, the sidewall of the data storage layer and the sidewall of the second conductive layer. An encapsulation layer is formed over the pillar structure and the dielectric layer. The encapsulation layer is in contact with the hydrophilic surfaces of the sidewall of the first conductive layer, the sidewall of the data storage layer and the sidewall of the second conductive layer.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 10, 2023
    Inventors: HSING-LIEN LIN, FU-TING SUNG, CHING JU YANG, CHII-MING WU
  • Patent number: 11637240
    Abstract: A semiconductor memory structure includes a memory cell, an encapsulation layer over a sidewall of the memory cell, and a nucleation layer between the sidewall of the memory cell and the encapsulation layer. The memory cell includes a top electrode, a bottom electrode and a data-storage element sandwiched between the bottom electrode and the top electrode. The nucleation layer includes metal oxide.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: April 25, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hsing-Lien Lin, Fu-Ting Sung, Ching Ju Yang, Chii-Ming Wu
  • Publication number: 20220367342
    Abstract: An interfacial layer is provided that binds a hydrophilic interlayer dielectric to a hydrophobic gap-filling dielectric. The hydrophobic gap-filling dielectric extends over and fill gaps between devices in an array of devices disposed between two metal interconnect layers over a semiconductor substrate and is the product of a flowable CVD process. The interfacial layer provides a hydrophilic upper surface to which the interlayer dielectric adheres. Optionally, the interfacial layer is also the product of a flowable CVD process. Alternatively, the interfacial layer may be silicon nitride or another dielectric that is hydrophilic. The interfacial layer may have a wafer contact angle (WCA) intermediate between a WCA of the hydrophobic dielectric and a WCA of the interlayer dielectric.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 17, 2022
    Inventors: Hsing-Lien Lin, Chin-Wei Liang, Hsun-Chung Kuang, Ching Ju Yang
  • Patent number: 11495532
    Abstract: An interfacial layer is provided that binds a hydrophilic interlayer dielectric to a hydrophobic gap-filling dielectric. The hydrophobic gap-filling dielectric extends over and fill gaps between devices in an array of devices disposed between two metal interconnect layers over a semiconductor substrate and is the product of a flowable CVD process. The interfacial layer provides a hydrophilic upper surface to which the interlayer dielectric adheres. Optionally, the interfacial layer is also the product of a flowable CVD process. Alternatively, the interfacial layer may be silicon nitride or another dielectric that is hydrophilic. The interfacial layer may have a wafer contact angle (WCA) intermediate between a WCA of the hydrophobic dielectric and a WCA of the interlayer dielectric.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: November 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsing-Lien Lin, Chin-Wei Liang, Hsun-Chung Kuang, Ching Ju Yang
  • Publication number: 20210272896
    Abstract: An interfacial layer is provided that binds a hydrophilic interlayer dielectric to a hydrophobic gap-filling dielectric. The hydrophobic gap-filling dielectric extends over and fill gaps between devices in an array of devices disposed between two metal interconnect layers over a semiconductor substrate and is the product of a flowable CVD process. The interfacial layer provides a hydrophilic upper surface to which the interlayer dielectric adheres. Optionally, the interfacial layer is also the product of a flowable CVD process. Alternatively, the interfacial layer may be silicon nitride or another dielectric that is hydrophilic. The interfacial layer may have a wafer contact angle (WCA) intermediate between a WCA of the hydrophobic dielectric and a WCA of the interlayer dielectric.
    Type: Application
    Filed: October 23, 2020
    Publication date: September 2, 2021
    Inventors: Hsing-Lien Lin, Chin-Wei Liang, Hsun-Chung Kuang, Ching Ju Yang
  • Publication number: 20210135102
    Abstract: A semiconductor memory structure includes a memory cell, an encapsulation layer over a sidewall of the memory cell, and a nucleation layer between the sidewall of the memory cell and the encapsulation layer. The memory cell includes a top electrode, a bottom electrode and a data-storage element sandwiched between the bottom electrode and the top electrode. The nucleation layer includes metal oxide.
    Type: Application
    Filed: April 9, 2020
    Publication date: May 6, 2021
    Inventors: HSING-LIEN LIN, FU-TING SUNG, CHING JU YANG, CHII-MING WU