Patents by Inventor Ching-Jung Liu

Ching-Jung Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240241179
    Abstract: A power supply system, a fuel cell power generation performance detection device and a control method thereof are provided. The fuel cell has a rated output voltage and an internal resistance having a preset resistance value. The detection device includes a test resistor, a first test switch, a current detection unit and a control unit. The control unit controls the first test switch and the current detection unit to send a first control signal to selectively turn on the first test switch. When the first test switch is turned on, the fuel cell, the test resistor, the first test switch and the current detection unit define a test loop. The current detection unit detects a test current passing through the test loop. The control unit obtains a real-time resistance value of the internal resistance based on the test current to evaluate the power generation performance of the fuel cell.
    Type: Application
    Filed: November 1, 2023
    Publication date: July 18, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yuh-Fwu CHOU, Ching-Jung LIU, Yin-Wen TSAI, Ku-Yen KANG, Chih-Wei HSU
  • Publication number: 20240157801
    Abstract: A method for estimating a flight time of a hydrogen fuel cell UAV (unmanned aerial vehicle) includes multiple steps performed by a controller: obtaining an internal pressure of a hydrogen tank by a pressure sensor installed on the hydrogen tank, calculating a remaining hydrogen volume according to the internal pressure and a capacity of the hydrogen tank, obtaining a reaction current value of the fuel cell, calculating a first hydrogen consumption rate according to the reaction current value, the number of a set of membrane electrodes connected in series and a Faraday constant, obtaining a second hydrogen consumption rate of a purge operation of an anode of the full cell; obtaining a hydrogen leakage rate of a stack of the fuel cell, and calculating the flight time according to the remaining hydrogen volume, the first hydrogen consumption rate, the second hydrogen consumption rate and the hydrogen leakage rate.
    Type: Application
    Filed: May 18, 2023
    Publication date: May 16, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ching-Jung LIU, Yuh-Fwu CHOU, Ku-Yen KANG, Yin-Wen TSAI, Ching-Fang HO, Cheng-Hsien YU
  • Patent number: 10684634
    Abstract: A system and method for detecting and compensating for temperature effects in a device having a power supply and a remote node. The system includes a power supply unit having an adjustable voltage output and a feedback circuit. The voltage output is adjusted based on the output of the feedback circuit. A power path is coupled to the power supply unit. The power path has power connectors to supply voltage from the power supply unit to a remote node. The remote node is operable to sense a voltage drop of the power path at the remote node associated with temperature effects on the power connectors. An adjustable resistor has an output coupled to the feedback circuit. A controller is coupled to the remote node and the adjustable resistor. The controller determines a resistance value to compensate for the temperature effects and sets the adjustable resistor to change the power output.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: June 16, 2020
    Assignee: QUANTA COMPUTER INC.
    Inventors: Chih-Wei Yang, Chih-Hao Chang, Ching-Jung Liu
  • Patent number: 9153829
    Abstract: A passive fuel cell assembly including a membrane electrode assembly, an anode current collector, a cathode current collector, a hydrophilic and gas-impermeable layer, and a gas-liquid separation layer is provided. The anode current collector and the cathode current collector are disposed at two opposite sides of the membrane electrode assembly. The hydrophilic and gas-impermeable layer is disposed on the anode current collector. The gas-liquid separation layer is disposed on the hydrophilic and gas-impermeable layer, such that the hydrophilic and gas-impermeable layer is disposed between the gas-liquid separation layer and the anode current collector.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 6, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Ku-Yen Kang, Ching-Jung Liu, Chun-Ho Tai, Chiou-Chu Lai
  • Patent number: 9048466
    Abstract: A flat fuel cell assembly including a MEA, a cathode porous current collector, an anode porous current collector, a gas barrier material layer, a case, and at least one air baffle is provided. The cathode porous current collector and the anode porous current collector are disposed at two opposite sides of the MEA. The gas barrier material layer is disposed at a side of the cathode porous current collector and has at least one opening for exposing a surface of the cathode porous current collector. The case is disposed at a side of the MEA, the gas barrier material layer is disposed between the case and the MEA, and an air channel is located between the gas barrier material layer and the case. Additionally, the air baffle disposed within the air channel.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: June 2, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Ku-Yen Kang, Chun-Ho Tai, Chiou-Chu Lai, Ching-Jung Liu
  • Publication number: 20140212781
    Abstract: A stacked type fuel cell includes electricity generating modules, at least two cathode flow field plates, and at least one common anode flow field plate. Each electricity generating module includes an anode collector, a cathode collector, a membrane electrode assembly (MEA) between the anode collector and the cathode collector, a fuel diffusion layer, and a cathode moisture layer. The fuel diffusion layer and the cathode moisture layer are respectively located at two sides of the MEA. The anode collector is between the fuel diffusion layer and the MEA, and the cathode collector is between the cathode moisture layer and the MEA. The common anode flow field plate is between two fuel diffusion layers in two adjacent electricity generating modules. The common anode flow field plate and two electricity generating modules located at two sides of the common anode flow field plate are sandwiched between the cathode flow field plates.
    Type: Application
    Filed: April 3, 2014
    Publication date: July 31, 2014
    Applicant: Industrial Technology Research Institute
    Inventors: Li-Duan Tsai, Ching-Jung Liu, Chun-Ho Tai, Ku-Yen Kang
  • Publication number: 20140131340
    Abstract: A heating method of a heating apparatus is provided. The heating apparatus includes a fuel cell, a power storage device, a heat-electricity conversion element, and a switching unit. The fuel cell is adapted for charging the power storage device. The power storage device is adapted for supplying electricity to the heat-electricity conversion element. The switching unit is adapted for switching the heating apparatus between a first mode and a second mode. The method includes a first heating process in which the fuel cell charges the power storage device and generates heat during a charging process, and a second heating process in which the power storage device supplies electricity to the heat-electricity conversion element and the heat-electricity conversion element generates heat. The first heating process and the second heating process are performed alternatively or simultaneously when the heating apparatus is switched to the first mode or the second mode, respectively.
    Type: Application
    Filed: April 16, 2013
    Publication date: May 15, 2014
    Applicant: Industrial Technology Research Institute
    Inventors: Ku-Yen Kang, Ching-Jung Liu, Chun-Ho Tai, Shou-Hung Ling
  • Publication number: 20140030622
    Abstract: A control method of replenishing anode fuel for DMFC system is provided. The DMFC system includes at least a fuel cell, a cathode humidity-holding layer, a fuel distribution unit, a control unit, a liquid fuel replenishment device, a fuel storage region, and a temperature detecting device. The temperature detecting device is for detecting an actual temperature of the fuel cell. The control method of replenishing anode fuel includes utilizing the control unit to adjust a fuel replenishment amount supplied from the liquid fuel replenishment device. The fuel replenishment amount is the sum of a basic replenishment amount and a replenishment amount for temperature correction. The basic replenishment amount is a function of actual discharge current of the fuel cell. The replenishment amount for temperature correction is a function of the difference between the actual temperature of the fuel cell and the target temperature.
    Type: Application
    Filed: December 6, 2012
    Publication date: January 30, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ching-Jung Liu, Ku-Yen Kang, Chun-Ho Tai, Chung-Jen Chou, Shou-Hung Ling
  • Publication number: 20130029239
    Abstract: A shutdown and self-maintenance operation process of a liquid fuel cell system is introduced. The liquid fuel cell system gives out a shutdown signal and a liquid fuel cell of the liquid fuel cell system stops discharging when receiving the shutdown signal. Thereafter, a self-maintenance operation consisting of the following four steps will be performed: (a) Supply of the cathode gas is stopped in the liquid fuel cell system. (b) After a first duration, the supply of the cathode gas is started. (c) The liquid fuel cell discharges until the output power of the liquid fuel cell is less than or equal to a first predetermined value. (d) The liquid fuel cell stops discharging and the supply of the cathode gas is stopped again. The (a) to (d) four steps are repeated several times before the liquid fuel cell system is completely stopped.
    Type: Application
    Filed: January 9, 2012
    Publication date: January 31, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ku-Yen Kang, Chun-Ho Tai, Ching-Jung Liu, Shou-Hung Ling, Chung-Jen Chou, Yin-Wen Tsai
  • Publication number: 20120156586
    Abstract: A fuel distribution structure including a first material layer, a second material layer, a flow channel layer and a filler is provided. The first material layer has a fuel inlet, the second material layer has a plurality of fuel outlets, the flow channel layer has a patterned flow channel, wherein the fuel inlet and the fuel outlets are covered by a distribution range of the patterned flow channel, and the filler is disposed in the patterned flow channel. In addition, a fuel cell having the above-mentioned fuel distribution structure is also provided.
    Type: Application
    Filed: February 18, 2011
    Publication date: June 21, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ku-Yen Kang, Ching-Jung Liu, Chun-Ho Tai, Chiou-Chu Lai
  • Publication number: 20100159299
    Abstract: A passive fuel cell assembly including a membrane electrode assembly, an anode current collector, a cathode current collector, a hydrophilic and gas-impermeable layer, and a gas-liquid separation layer is provided. The anode current collector and the cathode current collector are disposed at two opposite sides of the membrane electrode assembly. The hydrophilic and gas-impermeable layer is disposed on the anode current collector. The gas-liquid separation layer is disposed on the hydrophilic and gas-impermeable layer, such that the hydrophilic and gas-impermeable layer is disposed between the gas-liquid separation layer and the anode current collector.
    Type: Application
    Filed: July 2, 2009
    Publication date: June 24, 2010
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ku-Yen Kang, Ching-Jung Liu, Chun-Ho Tai, Chiou-Chu Lai
  • Publication number: 20100068584
    Abstract: A flat fuel cell assembly including a MEA, a cathode porous current collector, an anode porous current collector, a gas barrier material layer, a case, and at least one air baffle is provided. The cathode porous current collector and the anode porous current collector are disposed at two opposite sides of the MEA. The gas barrier material layer is disposed at a side of the cathode porous current collector and has at least one opening for exposing a surface of the cathode porous current collector. The case is disposed at a side of the MEA, the gas barrier material layer is disposed between the case and the MEA, and an air channel is located between the gas barrier material layer and the case. Additionally, the air baffle disposed within the air channel.
    Type: Application
    Filed: November 24, 2009
    Publication date: March 18, 2010
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ku-Yen Kang, Chun-Ho Tai, Chiou-Chu Lai, Ching-Jung Liu