Patents by Inventor Ching-Li Yang

Ching-Li Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240087861
    Abstract: In an embodiment, a magnetic assembly includes: an inner permeance annulus; and an outer permeance annulus connected to the inner permeance annulus via magnets, wherein the outer permeance annulus comprises a peak region with a thickness greater than other regions of the outer permeance annulus.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Tsung-Jen YANG, Yi-Zhen CHEN, Chih-Pin WANG, Chao-Li SHIH, Ching-Hou SU, Cheng-Yi HUANG
  • Patent number: 11916018
    Abstract: A connection structure of a semiconductor device is provided in the present invention. The connection structure includes an interlayer dielectric, a top metal structure, and a passivation layer. The interlayer dielectric is disposed on a substrate. The top metal structure is disposed on the interlayer dielectric. The top metal structure includes a bottom portion and a top portion disposed on the bottom portion. The bottom portion includes a first sidewall, and the top portion includes a second sidewall. A slope of the first sidewall is larger than a slope of the second sidewall. The passivation layer is conformally disposed on the second sidewall, the first sidewall, and a top surface of the interlayer dielectric.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: February 27, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chen-Yi Weng, Shih-Che Huang, Ching-Li Yang, Chih-Sheng Chang
  • Publication number: 20230326882
    Abstract: A semiconductor structure and its manufacturing method are provided. The semiconductor structure includes a substrate, a first dielectric layer on the substrate, a second dielectric layer on the first dielectric layer, a seal ring structure including first and second interconnect structures, and a passivation layer on the seal ring structure and the second dielectric layer. The first interconnect structure is located in the first dielectric layer. The second interconnect structure is located in the second dielectric layer and connected to the first interconnect structure. The passivation layer has a spacer portion covering a sidewall of the second dielectric layer and a portion of the first dielectric layer. A ditch exists in the passivation layer and the first dielectric layer. The spacer portion is located between the ditch and the seal ring structure. The semiconductor structure is able to reduce time and power of an etching process for forming the ditch.
    Type: Application
    Filed: May 2, 2022
    Publication date: October 12, 2023
    Applicant: United Microelectronics Corp.
    Inventors: Hui-Lung Chou, Ching-Li Yang, Chih-Sheng Chang, Chien-Ting Lin
  • Patent number: 11664333
    Abstract: A method of manufacturing a die seal ring including the following steps is provided. A dielectric layer is formed on a substrate. Conductive layers stacked on the substrate are formed in the dielectric layer. Each of the conductive layers includes a first conductive portion and a second conductive portion. The second conductive portion is disposed on the first conductive portion. A width of the first conductive portion is smaller than a width of the second conductive portion. A first air gap is formed between a sidewall of the first conductive portion and the dielectric layer. A second air gap is formed between a sidewall of the second conductive portion and the dielectric layer.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: May 30, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Che Huang, Shih-Hsien Chen, Ching-Li Yang, Chih-Sheng Chang
  • Publication number: 20210193575
    Abstract: A connection structure of a semiconductor device is provided in the present invention. The connection structure includes an interlayer dielectric, a top metal structure, and a passivation layer. The interlayer dielectric is disposed on a substrate. The top metal structure is disposed on the interlayer dielectric. The top metal structure includes a bottom portion and a top portion disposed on the bottom portion. The bottom portion includes a first sidewall, and the top portion includes a second sidewall. A slope of the first sidewall is larger than a slope of the second sidewall. The passivation layer is conformally disposed on the second sidewall, the first sidewall, and a top surface of the interlayer dielectric.
    Type: Application
    Filed: March 4, 2021
    Publication date: June 24, 2021
    Inventors: Chen-Yi Weng, Shih-Che Huang, Ching-Li Yang, Chih-Sheng Chang
  • Patent number: 10978391
    Abstract: A connection structure of a semiconductor device is provided in the present invention. The connection structure includes an interlayer dielectric, a top metal structure, and a passivation layer. The interlayer dielectric is disposed on a substrate. The top metal structure is disposed on the interlayer dielectric. The top metal structure includes a bottom portion and a top portion disposed on the bottom portion. The bottom portion includes a first sidewall, and the top portion includes a second sidewall. A slope of the first sidewall is larger than a slope of the second sidewall. The passivation layer is conformally disposed on the second sidewall, the first sidewall, and a top surface of the interlayer dielectric.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: April 13, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chen-Yi Weng, Shih-Che Huang, Ching-Li Yang, Chih-Sheng Chang
  • Publication number: 20210082839
    Abstract: A method of manufacturing a die seal ring including the following steps is provided. A dielectric layer is formed on a substrate. Conductive layers stacked on the substrate are formed in the dielectric layer. Each of the conductive layers includes a first conductive portion and a second conductive portion. The second conductive portion is disposed on the first conductive portion. A width of the first conductive portion is smaller than a width of the second conductive portion. A first air gap is formed between a sidewall of the first conductive portion and the dielectric layer. A second air gap is formed between a sidewall of the second conductive portion and the dielectric layer.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 18, 2021
    Applicant: United Microelectronics Corp.
    Inventors: Shih-Che Huang, Shih-Hsien Chen, Ching-Li Yang, Chih-Sheng Chang
  • Patent number: 10892235
    Abstract: A die seal ring and a manufacturing method thereof are provided. The die seal ring includes a substrate, a dielectric layer, and conductive layers. The dielectric layer is disposed on the substrate. The conductive layers are stacked on the substrate and located in the dielectric layer. Each of the conductive layers includes a first conductive portion and a second conductive portion. The second conductive portion is disposed on the first conductive portion. A width of the first conductive portion is smaller than a width of the second conductive portion. A first air gap is disposed between a sidewall of the first conductive portion and the dielectric layer. A second air gap is disposed between a sidewall of the second conductive portion and the dielectric layer. The die seal ring and the manufacturing method thereof can effectively prevent cracks generated during the die sawing process from damaging the circuit structure.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: January 12, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Che Huang, Shih-Hsien Chen, Ching-Li Yang, Chih-Sheng Chang
  • Publication number: 20200066657
    Abstract: A die seal ring and a manufacturing method thereof are provided. The die seal ring includes a substrate, a dielectric layer, and conductive layers. The dielectric layer is disposed on the substrate. The conductive layers are stacked on the substrate and located in the dielectric layer. Each of the conductive layers includes a first conductive portion and a second conductive portion. The second conductive portion is disposed on the first conductive portion. A width of the first conductive portion is smaller than a width of the second conductive portion. A first air gap is disposed between a sidewall of the first conductive portion and the dielectric layer. A second air gap is disposed between a sidewall of the second conductive portion and the dielectric layer. The die seal ring and the manufacturing method thereof can effectively prevent cracks generated during the die sawing process from damaging the circuit structure.
    Type: Application
    Filed: September 19, 2018
    Publication date: February 27, 2020
    Applicant: United Microelectronics Corp.
    Inventors: Shih-Che Huang, Shih-Hsien Chen, Ching-Li Yang, Chih-Sheng Chang
  • Publication number: 20190081000
    Abstract: A connection structure of a semiconductor device is provided in the present invention. The connection structure includes an interlayer dielectric, a top metal structure, and a passivation layer. The interlayer dielectric is disposed on a substrate. The top metal structure is disposed on the interlayer dielectric. The top metal structure includes a bottom portion and a top portion disposed on the bottom portion. The bottom portion includes a first sidewall, and the top portion includes a second sidewall. A slope of the first sidewall is larger than a slope of the second sidewall. The passivation layer is conformally disposed on the second sidewall, the first sidewall, and a top surface of the interlayer dielectric.
    Type: Application
    Filed: October 12, 2017
    Publication date: March 14, 2019
    Inventors: Chen-Yi Weng, Shih-Che Huang, Ching-Li Yang, Chih-Sheng Chang
  • Publication number: 20180061752
    Abstract: A method for fabricating semiconductor device is disclosed. First, a substrate is provided, and a capacitor is formed on the substrate and a hard mask on the capacitor, in which the capacitor includes a bottom electrode, a capacitor dielectric layer, and a top electrode. Next, a protective layer is formed on the sidewalls of the top electrode and the bottom electrode, in which the protective layer includes metal oxide.
    Type: Application
    Filed: September 20, 2016
    Publication date: March 1, 2018
    Inventors: Shih-Che Huang, Ching-Li Yang, Yu-Cheng Tung, Yu-Tsung Lai, Chih-Sheng Chang
  • Patent number: 9773860
    Abstract: A method for fabricating a capacitor is disclosed. First, a substrate is provided, a bottom electrode and a capacitor dielectric layer are formed on the substrate, a conductive layer is formed on the capacitor dielectric layer, a patterned hard mask is formed on the conductive layer, a patterned hard mask is used to remove part of the conductive layer to form a top electrode, the patterned hard mask is removed, and a protective layer is formed on a top surface and sidewalls of top electrode. Preferably, the protective layer includes metal oxides.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: September 26, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Tsung Lai, Ching-Li Yang, Yu-Cheng Tung, Shih-Che Huang, Chih-Sheng Chang
  • Patent number: 9312208
    Abstract: A through silicon via structure is disclosed. The through silicon via includes: a substrate; a first dielectric layer disposed on the substrate and having a plurality of first openings, in which a bottom of the plurality of first openings is located lower than an original surface of the substrate; a via hole disposed through the first dielectric layer and the substrate, in which the via hole not overlapping for all of the plurality of first openings; a second dielectric layer disposed within the plurality of first openings and on a sidewall of the via hole while filling the plurality of first openings; and a conductive material layer disposed within the via hole having the second dielectric layer on the sidewall of the via hole, thereby forming a through silicon via.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: April 12, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hsin-Yu Chen, Home-Been Cheng, Yu-Han Tsai, Ching-Li Yang
  • Patent number: 9048246
    Abstract: A die seal ring is provided. The die seal ring includes a substrate and a first layer extruding from the substrate. The first layer has a first fin ring structure and a layout of the first fin ring structure has a stamp-like shape. In addition, a method for forming a die seal ring is provided. A substrate having an active region is provided. A patterned sacrificial layer is formed on the substrate. A spacer is formed on the sidewall of the patterned sacrificial layer. The patterned sacrificial layer is removed. The substrate is patterned by using the spacer as a mask, thereby simultaneously forming at least a fin structure of a Fin-FET and a first layer of the die seal ring.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: June 2, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Te Wei, Po-Chao Tsao, Ching-Li Yang, Chien-Yang Chen, Hui-Ling Chen, Guan-Kai Huang
  • Patent number: 9012324
    Abstract: A through silicon via process includes the following steps. A substrate having a front side and a back side is provided. A passivation layer is formed on the back side of the substrate. An oxide layer is formed on the passivation layer.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: April 21, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Jia-Jia Chen, Chi-Mao Hsu, Tsun-Min Cheng, Ching-Wei Hsu, Szu-Hao Lai, Huei-Ru Tsai, Tsai-Yu Wen, Ching-Li Yang, Chien-Li Kuo
  • Publication number: 20150041961
    Abstract: A through silicon via structure is disclosed. The through silicon via includes: a substrate; a first dielectric layer disposed on the substrate and having a plurality of first openings, in which a bottom of the plurality of first openings is located lower than an original surface of the substrate; a via hole disposed through the first dielectric layer and the substrate, in which the via hole not overlapping for all of the plurality of first openings; a second dielectric layer disposed within the plurality of first openings and on a sidewall of the via hole while filling the plurality of first openings; and a conductive material layer disposed within the via hole having the second dielectric layer on the sidewall of the via hole, thereby forming a through silicon via.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 12, 2015
    Inventors: Hsin-Yu Chen, Home-Been Cheng, Yu-Han Tsai, Ching-Li Yang
  • Patent number: 8916471
    Abstract: A method for forming a through silicon via for signal and a shielding structure is provided. A substrate is provided and a region is defined on the substrate. A radio frequency (RF) circuit is formed in the region on the substrate. A through silicon trench (TST) and a through silicon via (TSV) are formed simultaneously, wherein the TST encompasses the region to serve as a shielding structure for the RF circuit. A metal interconnection system is formed on the substrate, wherein the metal interconnection system comprises a connection unit that electrically connects the TSV to the RF circuit to provide a voltage signal.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: December 23, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Ching-Li Yang, Chien-Li Kuo, Chung-Sung Chiang, Yu-Han Tsai, Chun-Wei Kang
  • Publication number: 20140367835
    Abstract: A die seal ring is provided. The die seal ring includes a substrate and a first layer extruding from the substrate. The first layer has a first fin ring structure and a layout of the first fin ring structure has a stamp-like shape. In addition, a method for forming a die seal ring is provided. A substrate having an active region is provided. A patterned sacrificial layer is formed on the substrate. A spacer is formed on the sidewall of the patterned sacrificial layer. The patterned sacrificial layer is removed. The substrate is patterned by using the spacer as a mask, thereby simultaneously forming at least a fin structure of a Fin-FET and a first layer of the die seal ring.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 18, 2014
    Inventors: Ming-Te Wei, Po-Chao Tsao, Ching-Li Yang, Chien-Yang Chen, Hui-Ling Chen, Guan-Kai Huang
  • Patent number: 8900996
    Abstract: A method of fabricating a through silicon via (TSV) structure is provided, in which, a first dielectric layer is formed on the substrate, the first dielectric layer is patterned to have at least one first opening, a via hole is formed in the first dielectric layer and the substrate, a second dielectric layer is conformally formed on the first dielectric layer, the second dielectric layer has at least one second opening corresponding to the at least one first opening, and the second dielectric layer covers a sidewall of the via hole. A conductive material layer is formed to fill the via hole and the second opening. The conductive material layer is planarized to form a TSV within the via hole. A TSV structure is also provided, in which, the second dielectric layer is disposed within the first opening and on the sidewall of the via hole.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: December 2, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Hsin-Yu Chen, Home-Been Cheng, Yu-Han Tsai, Ching-Li Yang
  • Patent number: 8884398
    Abstract: A method of programming an anti-fuse includes steps as follows. First, an insulating layer is provided. An anti-fuse region is defined on the insulating layer. An anti-fuse is embedded within the anti-fuse region of the insulating layer. The anti-fuse includes at least a first conductor and a second conductor. Then, part of the insulating layer is removed by a laser to form an anti-fuse opening in the insulating layer. Part of the first conductor and part of the second conductor are exposed through the anti-fuse opening. After that, a under bump metallurgy layer is formed in the anti-fuse opening to connect the first conductor and the second conductor electrically.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: November 11, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chu-Fu Lin, Chien-Li Kuo, Ching-Li Yang