Patents by Inventor Ching-Ming Yeh

Ching-Ming Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11988467
    Abstract: A liquid-cooling heat dissipation plate with pin-fins and an enclosed liquid cooler having the same are provided. The liquid-cooling heat dissipation plate includes a heat dissipation plate body, a plurality of rhombus-shaped pin-fins, and a plurality of ellipse-shaped pin-fins. The heat dissipation plate body has a first heat dissipation surface and a second heat dissipation surface opposite to each other. The first heat dissipation surface is in contact with a heat source, and the second heat dissipation surface is in contact with a cooling fluid. The rhombus-shaped pin-fins and the ellipse-shaped pin-fins are integrally formed on the second heat dissipation surface and in a high density arrangement. The ellipse-shaped pin-fins correspond in position to a relative low temperature region of the heat source, and the rhombus-shaped pin-fins correspond in position to a relative high temperature region of the heat source.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: May 21, 2024
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Ching-Ming Yang, Chun-Lung Wu, Tze-Yang Yeh
  • Publication number: 20240155807
    Abstract: A two-phase immersion-type heat dissipation structure having acute-angle notched structures is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, and a plurality of fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other, the non-fin surface is configured to be in contact with a heat source immersed in a two-phase coolant, and the fin surface is connected with the fins. More than half of the fins are functional fins, and at least one side surface of each of the functional fins has first and second surfaces defined thereon and connected to each other. An angle between the first surface and the fin surface is from 80 degrees to 100 degrees, and an angle between the second surface and the fin surface is less than 75 degrees.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 9, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240155808
    Abstract: A two-phase immersion-cooling heat-dissipation composite structure is provided. The heat-dissipation composite structure includes a heat dissipation base, a plurality of high-thermal-conductivity fins, and at least one high-porosity solid structure. The heat dissipation base has a first surface and a second surface that face away from each other. The second surface of the heat dissipation base is in contact with a heating element immersed in a two-phase coolant. The first surface of the heat dissipation base is connected to the high-thermal-conductivity fins. The at least one high-porosity solid structure is located at the first surface of the heat dissipation base, and is connected and alternately arranged between side walls of two adjacent ones of the high-thermal-conductivity fins. Each of the high-porosity solid structure includes a plurality of closed holes and a plurality of open holes.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 9, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240155809
    Abstract: A two-phase immersion-type heat dissipation structure having fins for facilitating bubble generation is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, and a plurality of fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other, the non-fin surface is configured to be in contact with a heat source immersed in a two-phase coolant, and the fin surface is connected with the plurality of fins. More than half of the fins are functional fins, and at least one side surface of each of the functional fins and the fin surface have an included angle therebetween that is from 80 degrees to 100 degrees. A center line average roughness (Ra) of the side surface is less than 3 ?m, and a ten-point average roughness (Rz) of the side surface is not less than 12 ?m.
    Type: Application
    Filed: November 6, 2022
    Publication date: May 9, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240142180
    Abstract: A two-phase immersion-type heat dissipation structure is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate and a plurality of non-vertical fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other. The non-fin surface is configured to be in contact with a heating element immersed in a two-phase coolant. The fin surface is connected with the non-vertical fins, a cross-sectional contour of one of the non-vertical fins has a top end point and a bottom end point connected with the fin surface, and the top and bottom end points are opposite to each other. A length of a cross-sectional contour line defined from the top end point to the bottom end point is greater than a perpendicular line length of a perpendicular line defined from the top end point to the fin surface.
    Type: Application
    Filed: November 1, 2022
    Publication date: May 2, 2024
    Inventors: CHING-MING YANG, CHUN-TE WU, TZE-YANG YEH
  • Publication number: 20240142181
    Abstract: A two-phase immersion-type heat dissipation structure having skived fin with high porosity is provided. The two-phase immersion-type heat dissipation structure having skived fin with high porosity includes a porous heat dissipation structure having a total porosity that is equal to or greater than 5%. The porous heat dissipation structure includes a porous substrate and a plurality of porous and skived fins. The porous substrate has a first surface and a second surface that face away from each other. The second surface of the porous substrate is configured to be in contact with a heating element that is immersed in a two-phase coolant. The plurality of porous and skived fins are integrally formed on the first surface of the porous substrate by skiving. A first porosity of the plurality of porous and skived fins is greater than a second porosity of the porous substrate.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 2, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240147662
    Abstract: A two-phase immersion-type heat dissipation structure having a porous structure is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, a plurality of fins, and a reinforcement frame. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other, the non-fin surface is configured to be in contact with a heat source immersed in a two-phase coolant, and the fins are integrally formed on the fin surface. A porous structure is covered onto at least one portion of the fin surface and at least one portion of the plurality of fins, and has a porosity of from 10% to 50% and a thickness that is from 0.1 mm to 1 mm. The reinforcement frame is bonded to the heat dissipation substrate and surrounds another one portion of the plurality of fins.
    Type: Application
    Filed: November 1, 2022
    Publication date: May 2, 2024
    Inventors: CHING-MING YANG, CHUN-TE WU, TZE-YANG YEH
  • Publication number: 20240102741
    Abstract: A heat dissipation structure having a heat pipe is provided. The heat dissipation structure includes a heat dissipation base, a plurality of fins, at least one heat pipe, and at least a first heat dissipation contact material and a second heat dissipation contact material that are different from one another. The heat dissipation base has a first and a second heat dissipation surface opposite to each other. The second heat dissipation surface is connected to the fins. At least one recessed trough is concavely formed on the first heat dissipation surface. The at least one heat pipe is located in the at least one recessed trough. The first and the second heat dissipation contact material are filled in the at least one recessed trough. A melting point of the second heat dissipation contact material is smaller than a melting point of the first heat dissipation contact material.
    Type: Application
    Filed: September 22, 2022
    Publication date: March 28, 2024
    Inventors: CHING-MING YANG, CHUN-TE WU, TZE-YANG YEH
  • Publication number: 20240090173
    Abstract: A two-phase immersion-type heat dissipation structure having high density heat dissipation fins is provided. The two-phase immersion-type heat dissipation structure having high density heat dissipation fins includes a heat dissipation substrate, a plurality of sheet-like heat dissipation fins, and a reinforcement structure. A bottom surface of the heat dissipation substrate is in contact with a heating element immersed in a two-phase coolant. The plurality of sheet-like heat dissipation fins are integrally formed on an upper surface of the heat dissipation substrate and arranged in high density. An angle between at least one of the sheet-like heat dissipation fins and the upper surface of the heat dissipation substrate is from 60° to 120°. At least one of the sheet-like heat dissipation fins has a length from 50 mm to 120 mm, a width from 0.1 mm to 0.35 mm, and a height from 2 mm to 8 mm.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 14, 2024
    Inventors: TZE-YANG YEH, CHING-MING YANG, CHUN-TE WU
  • Publication number: 20240085125
    Abstract: An immersion-type heat dissipation structure having high density heat dissipation fins is provided, which includes a heat dissipation substrate and the plurality of sheet-like heat dissipation fins. A thickness of the heat dissipation substrate is from 2 mm to 6 mm, and a bottom surface of the heat dissipation substrate contacts a heating element immersed in a two-phase coolant. The sheet-like heat dissipation fins are integrally formed on an upper surface of the heat dissipation substrate and arranged in high density. A length, a width, and a height of at least one of the sheet-like heat dissipation fins are from 60 mm to 120 mm, from 0.1 mm to 0.5 mm, and from 3 mm to 10 mm, respectively. Further, a distance between at least two of the sheet-like heat dissipation fins that are arranged in parallel to each other is from 0.1 mm to 0.5 mm.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 14, 2024
    Inventors: TZE-YANG YEH, CHING-MING YANG, CHUN-TE WU
  • Publication number: 20110149063
    Abstract: The present invention provides a measurement device and a measurement method of double-sided optical films, wherein the device and the method make use of an illumination light source with well-designed bright fields and dark fields and a device with double-sided coincidence optics to obtain the variation information about the horizontal mismatch and the angular mismatch of double-sided optical films.
    Type: Application
    Filed: September 8, 2010
    Publication date: June 23, 2011
    Applicant: Industrial Technology Research Institute
    Inventors: SHU-PING DONG, HUNG-MING TAI, DEH-MING SHYU, CHI-TANG CHEN, CHING-MING YEH, YI-CHANG CHEN, CHIA-CHI HUANG
  • Patent number: 7619190
    Abstract: The invention relates to a tilting adjustable surface profilometer, comprising an apparatus capable of adjusting an image acquiring angle. The apparatus includes two types of frameworks. One is a translation-stage-type tilting adjustable surface profilometer, which is enabled by the translations of two translation stage with the rotation of a rotary rack, a surface profile with an omni-directional angle of a sample can be obtained. The other framework is a surface profilometer with an arc-trajectory tilting apparatus, which is enabled by guiding the surface profilometer to slide along the arc rails with the rotations of the rotary rack, a surface profile with an omni-directional angle of a sample can be obtained.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: November 17, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Shih-Hsuan Kuo, Jin-Liang Chen, Ching-Ming Yeh, Shih-Fang Lee, Hung-Ming Tai
  • Patent number: 7532329
    Abstract: A fiber optic interferometric position sensor and measurement method thereof suitable for determining the moving direction of a measurement object in an environment of high electric or magnetic field strengths are disclosed. The fiber optic interferometric position sensor comprises at least one light source, a plurality of fiber optic couplers, a plurality of sensing fibers and a plurality of photodetectors. The fiber optic couplers are connected to the at least one light source, the photodetectors, and the sensing fibers, respectively.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: May 12, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Hung-Ming Tai, Jung-Tsung Chou, Kai-Yu Cheng, Huang-Chi Huang, Chiung-Huei Huang, Ching-Ming Yeh
  • Publication number: 20090079995
    Abstract: The invention relates to a tilting adjustable surface profilometer, comprising an apparatus capable of adjusting an image acquiring angle. The apparatus includes two types of frameworks. One is a translation-stage-type tilting adjustable surface profilometer, which is enabled by the translations of two translation stage with the rotation of a rotary rack, a surface profile with an omni-directional angle of a sample can be obtained. The other framework is a surface profilometer with an arc-trajectory tilting apparatus, which is enabled by guiding the surface profilometer to slide along the arc rails with the rotations of the rotary rack, a surface profile with an omni-directional angle of a sample can be obtained.
    Type: Application
    Filed: March 31, 2008
    Publication date: March 26, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shih-Hsuan Kuo, Jin-Liang Chen, Ching-Ming Yeh, Shih-Fang Lee, Hung-Ming Tai
  • Patent number: 7349099
    Abstract: A fiber optic interferometric position sensor and measurement method thereof suitable for determining the moving direction of a measurement object in an environment of high electric or magnetic field strengths are disclosed. The fiber optic interferometric position sensor comprises at least one light source, a plurality of fiber optic couplers, a plurality of sensing fibers and a plurality of photodetectors. The fiber optic couplers are connected to the at least one light source, the photodetectors, and the sensing fibers, respectively.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: March 25, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Hung-Ming Tai, Jung-Tsung Chou, Kai-Yu Cheng, Huang-Chi Huang, Chiung-Huei Huang, Ching-Ming Yeh
  • Publication number: 20080013095
    Abstract: A fiber optic interferometric position sensor and measurement method thereof suitable for determining the moving direction of a measurement object in an environment of high electric or magnetic field strengths are disclosed. The fiber optic interferometric position sensor comprises at least one light source, a plurality of fiber optic couplers, a plurality of sensing fibers and a plurality of photodetectors. The fiber optic couplers are connected to the at least one light source, the photodetectors, and the sensing fibers, respectively.
    Type: Application
    Filed: July 11, 2007
    Publication date: January 17, 2008
    Applicant: Industrial Technology Research Institute
    Inventors: Hung-Ming Tai, Jung-Tsung Chou, Kai-Yu Cheng, Huang-Chi Huang, Chiung-Huei Huang, Ching-Ming Yeh
  • Publication number: 20060109479
    Abstract: A fiber optic interferometric position sensor and measurement method thereof suitable for determining the moving direction of a measurement object in an environment of high electric or magnetic field strengths are disclosed. The fiber optic interferometric position sensor comprises at least one light source, a plurality of fiber optic couplers, a plurality of sensing fibers and a plurality of photodetectors. The fiber optic couplers are connected to the at least one light source, the photodetectors, and the sensing fibers, respectively.
    Type: Application
    Filed: June 22, 2005
    Publication date: May 25, 2006
    Applicant: Industrial Technology Research Institute
    Inventors: Hung-Ming Tai, Jung-Tsung Chou, Kai-Yu Cheng, Huang-Chi Huang, Chiung-Huei Huang, Ching-Ming Yeh