Patents by Inventor Ching-Ting CHIU

Ching-Ting CHIU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240107682
    Abstract: An embodiment composite material for semiconductor package mount applications may include a first component including a tin-silver-copper alloy and a second component including a tin-bismuth alloy or a tin-indium alloy. The composite material may form a reflowed bonding material having a room temperature tensile strength in a range from 80 MPa to 100 MPa when subjected to a reflow process. The reflowed bonding material may include a weight fraction of bismuth that is in a range from approximately 4% to approximately 15%. The reflowed bonding material may an alloy that is solid solution strengthened by a presence of bismuth or indium that is dissolved within the reflowed bonding material or a solid solution phase that includes a minor component of bismuth dissolved within a major component of tin. In some embodiments, the reflowed bonding material may include intermetallic compounds formed as precipitates such as Ag3Sn and/or Cu6Sn5.
    Type: Application
    Filed: April 21, 2023
    Publication date: March 28, 2024
    Inventors: Chao-Wei Chiu, Chih-Chiang Tsao, Jen-Jui Yu, Hsuan-Ting Kuo, Hsiu-Jen Lin, Ching-Hua Hsieh
  • Publication number: 20240096883
    Abstract: A method of manufacturing a gate structure includes at least the following steps. A gate dielectric layer is formed. A work function layer is deposited on the gate dielectric layer. A barrier layer is formed on the work function layer. A metal layer is deposited on the barrier layer to introduce fluorine atoms into the barrier layer. The barrier layer is formed by at least the following steps. A first TiN layer is formed on the work function layer. A top portion of the first TiN layer is converted into a trapping layer, and the trapping layer includes silicon atoms or aluminum atoms. A second TiN layer is formed on the trapping layer.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ji-Cheng Chen, Ching-Hwanq Su, Kuan-Ting Liu, Shih-Hang Chiu
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Publication number: 20240088144
    Abstract: A gate structure includes a metal layer, a barrier layer, and a work function layer. The barrier layer covers a bottom surface and sidewalls of the metal layer. The barrier layer includes fluorine and silicon, or fluorine and aluminum. The barrier layer is a tri-layered structure. The work function layer surrounds the barrier layer.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ji-Cheng Chen, Ching-Hwanq Su, Kuan-Ting Liu, Shih-Hang Chiu
  • Publication number: 20240071952
    Abstract: A method includes depositing solder paste over first contact pads of a first package component. Spring connectors of a second package component are aligned to the solder paste. The solder paste is reflowed to electrically and physically couple the spring connectors of the second package component to the first contact pads of the first package component. A device includes a first package component and a second package component electrically and physically coupled to the first package component by way of a plurality of spring coils. Each of the plurality of spring coils extends from the first package component to the second package component.
    Type: Application
    Filed: January 10, 2023
    Publication date: February 29, 2024
    Inventors: Chih-Chiang Tsao, Hsuan-Ting Kuo, Chao-Wei Chiu, Hsiu-Jen Lin, Ching-Hua Hsieh
  • Patent number: 8970521
    Abstract: A method for identifying touch object on a touch panel has steps of (A) reading m capacitance variations on a first direction, wherein the m capacitance variations respectively correspond to m sensed units of the touch panel; (B) determining whether a difference between the capacitance variation of a kth sensed unit and that of another sensed unit exceeds a preset noise ripple, wherein k is equal to or smaller than m, m is a positive integer; (C) determining whether the capacitance variation of the kth sensed unit exceeds those of the adjacent sensed units; and (D) determining a touch stylus touched on the touch panel when the difference exceeds the preset noise ripple and the capacitance variation of the kth sensed unit exceeds those of the adjacent sensed units. Accordingly, the method can correctly identify a range touched by a stylus from the sensed signals combined with LCM noise signals.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: March 3, 2015
    Assignee: Elan Microelectronics Corporation
    Inventor: Ching-Ting Chiu
  • Patent number: 8896570
    Abstract: A detecting method for a touch device, the method includes the steps of reading all sensed values of a frame associated with the touch device, computing a difference between a maximum sensed value and a minimum sensed value of all the sensed values of the frame, comparing the difference with a base value to generate a comparison result and executing a corresponding operation based on the comparison result.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 25, 2014
    Assignee: Elan Microelectronics Corp.
    Inventors: Ching-Ting Chiu, Po-Hao Kuo, Chia-Hsing Lin
  • Publication number: 20140160060
    Abstract: A detecting method for a touch device, the method includes the steps of reading all sensed values of a frame associated with the touch device, computing a difference between a maximum sensed value and a minimum sensed value of all the sensed values of the frame, comparing the difference with a base value to generate a comparison result and executing a corresponding operation based on the comparison result.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 12, 2014
    Applicant: ELAN MICROELECTRONICS CORPORATION
    Inventors: Ching-Ting CHIU, Po-Hao KUO, Chia-Hsing LIN
  • Publication number: 20130076700
    Abstract: A method for identifying touch object has steps of presetting a range of slopes for noise signals, identifying multiple sensed signals, each having a slope higher than the range of slopes for noise signals in a sensing frame, and if the slope of each sensed signal is higher than an upper bound of the range of slopes for noise signals and is higher than each of those of the adjacent sensed signals, determining that the sensed signal is sensed from a corresponding sensed point touched by a stylus. Accordingly, the method can correctly identify a range touched by a stylus from the sensed signals combined with LCM noise signals.
    Type: Application
    Filed: March 27, 2012
    Publication date: March 28, 2013
    Applicant: ELAN MICROELECTRONICS CORPORATION
    Inventor: Ching-Ting CHIU