Patents by Inventor Ching-Wei Tsai
Ching-Wei Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250142901Abstract: A method of forming a semiconductor device includes: forming a device layer that includes nanostructures and a gate structure around the nanostructures; forming a first interconnect structure on a front-side of the device layer; and forming a second interconnect structure on a backside of the device layer, which includes: forming a dielectric layer along the backside of the device layer using a first dielectric material; forming a first conductive feature and a second conductive feature in the dielectric layer; form an opening in the dielectric layer between the first and the second conductive features; forming a first barrier layer and a second barrier layer along a first sidewall of the first conductive feature and along a second sidewall of the second conductive feature, respectively; and forming a second dielectric material different from the first dielectric material in the opening between the first barrier layer and the second barrier layer.Type: ApplicationFiled: January 3, 2024Publication date: May 1, 2025Inventors: Chih-Chao Chou, Cheng-Chi Chuang, Chih-Hao Wang, Ching-Wei Tsai
-
Publication number: 20250142955Abstract: A method for fabricating a semiconductor device includes providing a fin in a first region of a substrate. The fin includes a plurality of a first type of epitaxial layers and a plurality of a second type of epitaxial layers. A portion of a layer of the second type of epitaxial layers in a channel region of the first fin is removed to form a first gap between a first layer of the first type of epitaxial layers and a second layer of the first type of epitaxial layers. A first portion of a first gate structure is formed within the first gap and extending from a first surface of the first layer of the first type of epitaxial layers to a second surface of the second layer of the first type of epitaxial layers. A first source/drain feature is formed abutting the first portion of the first gate structure.Type: ApplicationFiled: January 6, 2025Publication date: May 1, 2025Inventors: Kuo-Cheng CHING, Ching-Wei TSAI, Kuan-Lun CHENG, Chih-Hao WANG
-
Publication number: 20250142954Abstract: A semiconductor device includes a semiconductor channel region, a source/drain region, and a contact structure. The semiconductor channel region is over a substrate. The source/drain region is adjacent the semiconductor channel region. The source/drain region has a notched corner. The contact structure has a portion inlaid in the notched corner in the source/drain region.Type: ApplicationFiled: December 31, 2024Publication date: May 1, 2025Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Kuo-Cheng CHING, Ching-Wei TSAI, Kuan-Lun CHENG, Chih-Hao WANG
-
Publication number: 20250142950Abstract: The present disclosure provides embodiments of semiconductor devices. A semiconductor device according to the present disclosure include an elongated semiconductor member surrounded by an isolation feature and extending lengthwise along a first direction, a first source/drain feature and a second source/drain feature over a top surface of the elongated semiconductor member, a vertical stack of channel members each extending lengthwise between the first source/drain feature and the second source/drain feature along the first direction, a gate structure wrapping around each of the channel members, an epitaxial layer deposited on the bottom surface of the elongated semiconductor member, a silicide layer disposed on the epitaxial layer, and a conductive layer disposed on the silicide layer.Type: ApplicationFiled: December 30, 2024Publication date: May 1, 2025Inventors: Yu-Xuan Huang, Ching-Wei Tsai, Jam-Wem Lee, Kuo-Ji Chen, Kuan-Lun Cheng
-
Publication number: 20250133808Abstract: Aspects of the disclosure provide a method for forming a fin field effect transistor (FinFET) incorporating a fin top hardmask on top of a channel region of a fin. Because of the presence of the fin top hardmask, a gate height of the FinFET can be reduced without affecting proper operations of vertical gate channels on sidewalls of the fin. Consequently, parasitic capacitance between a gate stack and source/drain contacts of the FinFET can be reduced by lowering the gate height of the FinFET.Type: ApplicationFiled: December 19, 2024Publication date: April 24, 2025Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Kuo-Cheng CHING, Kai-Chieh YANG, Ching-Wei TSAI, Kuan-Lun CHENG, Chih-Hao WANG
-
Publication number: 20250120166Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary method comprises forming a first stack structure and a second stack structure in a first area over a substrate, wherein each of the stack structures includes semiconductor layers separated and stacked up; depositing a first interfacial layer around each of the semiconductor layers of the stack structures; depositing a gate dielectric layer around the first interfacial layer; forming a dipole oxide layer around the gate dielectric layer; removing the dipole oxide layer around the gate dielectric layer of the second stack structure; performing an annealing process to form a dipole gate dielectric layer for the first stack structure and a non-dipole gate dielectric layer for the second stack structure; and depositing a first gate electrode around the dipole gate dielectric layer of the first stack structure and the non-dipole gate dielectric layer of the second stack structure.Type: ApplicationFiled: December 16, 2024Publication date: April 10, 2025Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Kuan-Lun Cheng, Hou-Yu Chen, Ching-Wei Tsai, Chih-Hao Wang, Lung-Kun Chu, Mao-Lin Huang, Jia-Ni Yu
-
Patent number: 12272751Abstract: A semiconductor device includes a substrate. The semiconductor device includes a dielectric layer disposed over a portion of the substrate. The semiconductor device includes a diffusion blocking layer disposed over the dielectric layer. The diffusion blocking layer and the dielectric layer have different material compositions. The semiconductor device includes a ferroelectric layer disposed over the diffusion blocking layer.Type: GrantFiled: February 13, 2023Date of Patent: April 8, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chi-Hsing Hsu, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang, Sai-Hooi Yeong
-
Patent number: 12266594Abstract: A method of making a semiconductor device includes manufacturing a first transistor over a first side of a substrate. The method further includes depositing a spacer material against a sidewall of the first transistor. The method further includes recessing the spacer material to expose a first portion of the sidewall of the first transistor. The method further includes manufacturing a first electrical connection to the transistor, a first portion of the electrical connection contacts a surface of the first transistor farthest from the substrate, and a second portion of the electrical connect contacts the first portion of the sidewall of the first transistor. The method further includes manufacturing a self-aligned interconnect structure (SIS) extending along the spacer material, wherein the spacer material separates a portion of the SIS from the first transistor, and the first electrical connection directly contacts the SIS.Type: GrantFiled: November 22, 2023Date of Patent: April 1, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chih-Yu Lai, Chih-Liang Chen, Chi-Yu Lu, Shang-Syuan Ciou, Hui-Zhong Zhuang, Ching-Wei Tsai, Shang-Wen Chang
-
Publication number: 20250105138Abstract: Methods of forming decoupling capacitors in interconnect structures formed on backsides of semiconductor devices and semiconductor devices including the same are disclosed. In an embodiment, a device includes a device layer including a first transistor; a first interconnect structure on a front-side of the device layer; a second interconnect structure on a backside of the device layer, the second interconnect structure including a first dielectric layer on the backside of the device layer; a contact extending through the first dielectric layer to a source/drain region of the first transistor; a first conductive layer including a first conductive line electrically connected to the source/drain region of the first transistor through the contact; and a second dielectric layer adjacent the first conductive line, the second dielectric layer including a material having a k-value greater than 7.0, a first decoupling capacitor including the first conductive line and the second dielectric layer.Type: ApplicationFiled: December 11, 2024Publication date: March 27, 2025Inventors: Yu-Xuan Huang, Hou-Yu Chen, Ching-Wei Tsai, Kuan-Lun Cheng, Chung-Hui Chen
-
Publication number: 20250087632Abstract: A semiconductor package includes a first semiconductor die and a second semiconductor die bonded over the first semiconductor die. The second semiconductor die includes a first backside interconnect structure having a first power rail structure. An integrated voltage regulator die is bonded over the second semiconductor die such that the integrated voltage regulator die is electrically connected to the first power rail structure. A through via is on the first semiconductor die and is electrically coupled to the first semiconductor die. The through via is disposed outside of and adjacent to the second semiconductor die. The through via also electrically couples the first semiconductor die to the second semiconductor die through the integrated voltage regulator die.Type: ApplicationFiled: January 5, 2024Publication date: March 13, 2025Inventors: Chih-Chao Chou, Ching-Wei Tsai, Yi-Hsun Chiu
-
Publication number: 20250081622Abstract: Semiconductor structures and formation processes thereof are provided. A semiconductor structure of the present disclosure includes a semiconductor substrate, a plurality of transistors disposed on the semiconductor substrate and comprising a plurality of gate structures extending lengthwise along a first direction, a metallization layer disposed over the plurality of transistors, the metallization layer comprising a plurality of metal layers and a plurality of contact vias, a dielectric layer over the metallization layer, a plurality of dielectric fins extending parallel along the first direction and disposed over the dielectric layer, a semiconductor layer disposed conformally over the plurality of dielectric fins, a source contact and a drain contact disposed directly on the semiconductor layer, and a gate structure disposed over the semiconductor layer and between the source contact and the drain contact.Type: ApplicationFiled: December 6, 2023Publication date: March 6, 2025Inventors: Hung-Li Chiang, Tsung-En Lee, Jer-Fu Wang, Chao-Ching Cheng, Iuliana Radu, Cheng-Chi Chuang, Chih-Sheng Chang, Ching-Wei Tsai
-
Publication number: 20250081594Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a first and second gate electrode layers, and a dielectric feature disposed between the first and second gate electrode layers. The dielectric feature has a first surface. The structure further includes a first conductive layer disposed on the first gate electrode layer. The first conductive layer has a second surface. The structure further includes a second conductive layer disposed on the second gate electrode layer. The second conductive layer has a third surface, and the first, second, and third surfaces are coplanar. The structure further includes a third conductive layer disposed over the first conductive layer, a fourth conductive layer disposed over the second conductive layer, and a dielectric layer disposed on the first surface of the dielectric feature. The dielectric layer is disposed between the third conductive layer and the fourth conductive layer.Type: ApplicationFiled: November 20, 2024Publication date: March 6, 2025Inventors: Kuan-Ting PAN, Kuo-Cheng CHIANG, Shang-Wen CHANG, Ching-Wei TSAI, Kuan-Lun CHENG, Chih-Hao WANG
-
Patent number: 12243780Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a gate stack over a substrate. The substrate has a base and a multilayer structure over the base, and the gate stack wraps around the multilayer structure. The method includes partially removing the multilayer structure, which is not covered by the gate stack. The multilayer structure remaining under the gate stack forms a multilayer stack, and the multilayer stack includes a sacrificial layer and a channel layer over the sacrificial layer. The method includes partially removing the sacrificial layer to form a recess in the multilayer stack. The method includes forming an inner spacer layer in the recess and a bottom spacer over a sidewall of the channel layer. The method includes forming a source/drain structure over the bottom spacer. The bottom spacer separates the source/drain structure from the channel layer.Type: GrantFiled: September 13, 2021Date of Patent: March 4, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Ching-Wei Tsai, Yu-Xuan Huang, Kuan-Lun Cheng, Chih-Hao Wang, Min Cao, Jung-Hung Chang, Lo-Heng Chang, Pei-Hsun Wang, Kuo-Cheng Chiang
-
Publication number: 20250070011Abstract: A method includes forming first integrated circuit devices and second integrated circuit devices on a semiconductor substrate of a wafer, forming a metal layer as a part of the wafer, and forming a transistor comprising a first source/drain region connected to the first integrated circuit devices. The transistor is farther away from the semiconductor substrate than the metal layer. An electrical connector is formed on a surface of the wafer, and is electrically connected to a second source/drain region of the transistor.Type: ApplicationFiled: January 2, 2024Publication date: February 27, 2025Inventors: Chih-Chao Chou, Cheng-Chi Chuang, Chih-Hao Wang, Ching-Wei Tsai, Shang-Wen Chang
-
Patent number: 12237233Abstract: Semiconductor devices and methods are provided which facilitate performing physical failure analysis (PFA) testing from a backside of the devices. In at least one example, a device is provided that includes a semiconductor device layer including a plurality of diffusion regions. A first interconnection structure is disposed on a first side of the semiconductor device layer, and the first interconnection structure includes at least one electrical contact. A second interconnection structure is disposed on a second side of the semiconductor device layer, and the second interconnection structure includes a plurality of backside power rails. Each of the backside power rails at least partially overlaps a respective diffusion region of the plurality of diffusion regions and defines openings which expose portions of the respective diffusion region at the second side of the semiconductor device layer.Type: GrantFiled: May 6, 2022Date of Patent: February 25, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chih-Chao Chou, Yi-Hsun Chiu, Shang-Wen Chang, Ching-Wei Tsai, Chih-Hao Wang
-
Publication number: 20250062195Abstract: A device includes a plurality of tracks, wherein at least one of the plurality of tracks comprises a first power rail for a first voltage. The device further includes a first via in electrical contact with the power rail. The device further includes a first contact in electrical contact with the first via. The device further includes a first transistor in electrical contact with the first contact. The device further includes a second transistor in electrical isolation with the first transistor. The device further includes a second contact in electrical contact with the second transistor. The device further includes a second via in electrical contact with the second contact. The device further includes a second power rail in electrical contact with the second via, wherein the second power rail is configured to carry a second voltage.Type: ApplicationFiled: November 5, 2024Publication date: February 20, 2025Inventors: Chih-Yu LAI, Chih-Liang CHEN, Chi-Yu LU, Shang-Syuan CIOU, Hui-Zhong ZHUANG, Ching-Wei TSAI, Shang-Wen CHANG
-
Publication number: 20250063809Abstract: The present disclosure describes a structure including a fin field effect transistor (finFET) and a nano-sheet transistor on a substrate and a method of forming the structure. The method can include forming first and second vertical structures over a substrate, where each of the first and the second vertical structures can include a buffer region and a first channel layer formed over the buffer region. The method can further include disposing a masking layer over the first channel layer of the first and second vertical structures, removing a portion of the first vertical structure to form a first recess, forming a second channel layer in the first recess, forming a second recess in the second channel layer, and disposing an insulating layer in the second recess.Type: ApplicationFiled: November 7, 2024Publication date: February 20, 2025Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Wang-Chun Huang, Chih-Hao Wang, Ching-Wei Tsai, Kuan-Lun Cheng
-
Patent number: 12230572Abstract: A semiconductor structure includes a first transistor having a first source/drain (S/D) feature and a first gate; a second transistor having a second S/D feature and a second gate; a multi-layer interconnection disposed over the first and the second transistors; a signal interconnection under the first and the second transistors; and a power rail under the signal interconnection and electrically isolated from the signal interconnection, wherein the signal interconnection electrically connects one of the first S/D feature and the first gate to one of the second S/D feature and the second gate.Type: GrantFiled: May 18, 2023Date of Patent: February 18, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Yu-Xuan Huang, Ching-Wei Tsai, Yi-Hsun Chiu, Yi-Bo Liao, Kuan-Lun Cheng, Wei-Cheng Lin, Wei-An Lai, Ming Chian Tsai, Jiann-Tyng Tzeng, Hou-Yu Chen, Chun-Yuan Chen, Huan-Chieh Su
-
Patent number: 12224348Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a plurality of nanowire structures over a channel region of a semiconductor fin structure, a source/drain feature on a source/drain region of the semiconductor fin structure, and a dielectric fin structure spaced apart from the source/drain feature and the semiconductor fin structure. A top surface of the dielectric fin structure is higher than a top surface of a bottommost one of the nanowire structures, and a bottom surface of the dielectric fin structure is lower than a bottom surface of the source/drain feature.Type: GrantFiled: April 15, 2024Date of Patent: February 11, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Kuo-Cheng Chiang, Shi-Ning Ju, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
-
Publication number: 20250046700Abstract: A method includes forming a first device die and a second device die. The first device die includes a first integrated circuit, and a first bond pad at a first surface of the first device die. The first integrated circuit is electrically connected to the first bond pad. The second device die includes a power switch that includes a first source/drain region, a second source/drain region, a second bond pad electrically connecting to the first source/drain region, and a third bond pad electrically connecting to the second source/drain region. The method further includes bonding the first device die with the second device die to form a package, with the first bond pad bonding to the third bond pad, and bonding the package to a package component.Type: ApplicationFiled: October 26, 2023Publication date: February 6, 2025Inventors: Chih-Chao Chou, Cheng-Chi Chuang, Ching-Wei Tsai, Shang-Wen Chang