Patents by Inventor Ching-Yang Chuang

Ching-Yang Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220084878
    Abstract: A fabricating method of transistors includes providing a substrate with numerous transistors thereon. Each of the transistors includes a gate structure. A gap is disposed between gate structures adjacent to each other. Later, a protective layer and a first dielectric layer are formed in sequence to cover the substrate and the transistors and to fill in the gap. Next, numerous buffering particles are formed to contact the first dielectric layer. The buffering particles do not contact each other. Subsequently, a second dielectric layer is formed to cover the buffering particles. After that, a first planarization process is performed to remove part of the first dielectric layer, part of the second dielectric layer and buffering particles by taking the protective layer as a stop layer, wherein a removing rate of the second dielectric layer is greater than a removing rate of the buffering particles during the first planarization process.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 17, 2022
    Inventors: Fu-Shou Tsai, Yang-Ju Lu, Yong-Yi Lin, Yu-Lung Shih, Ching-Yang Chuang, Ji-Min Lin, Kun-Ju Li
  • Patent number: 11257711
    Abstract: A fabricating method of transistors includes providing a substrate with numerous transistors thereon. Each of the transistors includes a gate structure. A gap is disposed between gate structures adjacent to each other. Later, a protective layer and a first dielectric layer are formed in sequence to cover the substrate and the transistors and to fill in the gap. Next, numerous buffering particles are formed to contact the first dielectric layer. The buffering particles do not contact each other. Subsequently, a second dielectric layer is formed to cover the buffering particles. After that, a first planarization process is performed to remove part of the first dielectric layer, part of the second dielectric layer and buffering particles by taking the protective layer as a stop layer, wherein a removing rate of the second dielectric layer is greater than a removing rate of the buffering particles during the first planarization process.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: February 22, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Fu-Shou Tsai, Yang-Ju Lu, Yong-Yi Lin, Yu-Lung Shih, Ching-Yang Chuang, Ji-Min Lin, Kun-Ju Li
  • Patent number: 11211471
    Abstract: The present invention discloses a metal gate process. A sacrificial nitride layer is introduced during the fabrication of metal gates. The gate height can be well controlled by introducing the sacrificial nitride layer. Further, the particle fall-on problem can be effectively solved.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: December 28, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Fu-Shou Tsai, Yong-Yi Lin, Yang-Ju Lu, Yu-Lung Shih, Ji-Min Lin, Ching-Yang Chuang, Kun-Ju Li
  • Publication number: 20210273076
    Abstract: A method of forming a gate includes the following steps. A gate structure is formed on a substrate. An etch stop layer is formed on the gate structure and the substrate. A dielectric layer is formed to cover the etch stop layer. The dielectric layer is planarized to form a planarized top surface of the dielectric layer and expose a portion of the etch stop layer on the gate structure. An oxygen containing treatment is performed to form an oxygen containing layer on the exposed etch stop layer. A deposition process is performed to form an oxide layer covering the planarized top surface of the dielectric layer and the oxygen containing layer.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 2, 2021
    Inventors: Yang-Ju Lu, Chun-Yi Wang, Fu-Shou Tsai, Yong-Yi Lin, Ching-Yang Chuang, Wen-Chin Lin, Hsin-Kuo Hsu