Patents by Inventor Ching-Yang Wen

Ching-Yang Wen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220013430
    Abstract: A semiconductor structure includes a glass substrate and a device wafer. The glass substrate includes a glass layer, a heat dissipation layer and a silicon nitride layer stacked from bottom to top. The device wafer includes at least one semiconductor device integrated in a device layer situated over the silicon nitride layer of the glass substrate. Or, the glass substrate includes a glass layer and a silicon nitride layer stacked from bottom to top. The device wafer includes at least one semiconductor device integrated in a device layer, and a heat dissipation layer is stacked on the device layer, wherein the heat dissipation layer is bonded with the silicon nitride layer of the glass substrate. The present invention also provides a method of wafer bonding for manufacturing said semiconductor structure.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 13, 2022
    Inventors: Chia-Liang Liao, Purakh Raj Verma, Ching-Yang Wen, Chee Hau Ng
  • Publication number: 20210313116
    Abstract: A structure of capacitors connected in parallel includes a substrate. A trench embedded in the substrate. Numerous electrode layers respectively conformally fill in and cover the trench. The electrode layers are formed of numerous nth electrode layers, wherein n is a positive integer from 1 to M, and M is not less than 3. The nth electrode layer with smaller n is closer to the sidewall of the trench. When n equals to M, the Mth electrode layer fills in the center of the trench, and the top surface of the Mth electrode is aligned with the top surface of the substrate. A capacitor dielectric layer is disposed between the adjacent electrode layers. A first conductive plug contacts the nth electrode layer with odd-numbered n. A second conductive plug contacts the nth electrode layer with even-numbered n.
    Type: Application
    Filed: April 21, 2020
    Publication date: October 7, 2021
    Inventors: Purakh Raj Verma, Ching-Yang Wen, XINGXING CHEN, CHAO JIN
  • Publication number: 20210125921
    Abstract: A semiconductor device comprises a buried dielectric layer, a first gate structure, a second gate structure, a first source/drain region, a second source/drain region, a front-side metallization, a backside metallization, and conductive contacts. The first gate structure and the second gate structure disposed respectively in the front-side and back side of the dielectric layer, the first source/drain region and the second source/drain region are disposed between the first gate structure and the second gate structures. The front-side metallization is disposed on the front-side of the buried dielectric layer, and the backside metallization is disposed on the backside of the buried dielectric layer. The conductive contacts penetrate the buried dielectric layer and electrically couple the front-side metallization to the backside metallization.
    Type: Application
    Filed: January 4, 2021
    Publication date: April 29, 2021
    Inventors: Purakh Raj Verma, Ching-Yang Wen, Li Wang, Kai Cheng
  • Publication number: 20210104602
    Abstract: A semiconductor device and a method for manufacturing the semiconductor device are provided. The semiconductor device includes an insulating layer, a semiconductor layer, a plurality of isolation structures, a transistor, a first contact, a plurality of silicide layers, and a protective layer. The semiconductor layer is disposed on a front side of the insulating layer. The plurality of isolation structures are disposed in the semiconductor layer. The transistor is disposed on the semiconductor layer. The first contact is disposed beside the transistor and passes through one of the plurality of isolation structures and the insulating layer therebelow. The plurality of silicide layers are respectively disposed on a bottom surface of the first contact and disposed on a source, a drain, and a gate of the transistor. The protective layer is disposed between the first contact and the insulating layer.
    Type: Application
    Filed: December 16, 2020
    Publication date: April 8, 2021
    Applicant: United Microelectronics Corp.
    Inventors: Wen-Shen Li, Ching-Yang Wen, Purakh Raj Verma, Xingxing Chen, Chee-Hau Ng
  • Publication number: 20210098624
    Abstract: A semiconductor device includes a buried dielectric layer, a first gate structure, a second gate structure, a first source/drain region, a second source/drain region, a trench, and a contact layer. The first gate structure is disposed on a front-side of the buried dielectric layer, and the second gate structure is disposed on a backside of the buried dielectric layer. The first source/drain region and a second source/drain region are disposed between the first gate structure and the second gate structure. The trench is formed in the buried dielectric layer, and the contact layer is disposed in the trench and electrically coupled to the second source/drain region, where the contact structure and the second gate structure are formed of the same material.
    Type: Application
    Filed: December 9, 2020
    Publication date: April 1, 2021
    Inventors: Purakh Raj Verma, Ching-Yang Wen, Li Wang, Kai Cheng
  • Patent number: 10923599
    Abstract: A semiconductor device includes a buried dielectric layer, a first gate structure, a second gate structure, a first source/drain region, a second source/drain region, a first contact structure and a second contact structure. The first gate structure and the second gate structure disposed respectively in the front-side and backside of the dielectric layer, the first source/drain region and the second source/drain region are disposed between the first gate structure and the second gate structure, the first contact structure is disposed in the front-side of the dielectric layer and electrically coupled to the first source/drain region, the second contact structure is disposed in the backside of the dielectric layer and electrically coupled to the second source/drain region.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: February 16, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Ching-Yang Wen, Li Wang, Kai Cheng
  • Patent number: 10903314
    Abstract: A semiconductor device and a method for manufacturing the semiconductor device are provided. The semiconductor device includes an insulating layer, a semiconductor layer, a plurality of isolation structures, a transistor, a first contact, a plurality of silicide layers, and a protective layer. The semiconductor layer is disposed on a front side of the insulating layer. The plurality of isolation structures are disposed in the semiconductor layer. The transistor is disposed on the semiconductor layer. The first contact is disposed beside the transistor and passes through one of the plurality of isolation structures and the insulating layer therebelow. The plurality of silicide layers are respectively disposed on a bottom surface of the first contact and disposed on a source, a drain, and a gate of the transistor. The protective layer is disposed between the first contact and the insulating layer.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: January 26, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Shen Li, Ching-Yang Wen, Purakh Raj Verma, Xingxing Chen, Chee-Hau Ng
  • Publication number: 20200328311
    Abstract: A semiconductor device includes a buried dielectric layer, a first gate structure, a second gate structure, a first source/drain region, a second source/drain region, a first contact structure and a second contact structure. The first gate structure and the second gate structure disposed respectively in the front-side and backside of the dielectric layer, the first source/drain region and the second source/drain region are disposed between the first gate structure and the second gate structure, the first contact structure is disposed in the front-side of the dielectric layer and electrically coupled to the first source/drain region, the second contact structure is disposed in the backside of the dielectric layer and electrically coupled to the second source/drain region.
    Type: Application
    Filed: May 9, 2019
    Publication date: October 15, 2020
    Inventors: Purakh Raj Verma, Ching-Yang Wen, Li Wang, Kai Cheng
  • Patent number: 10763170
    Abstract: A semiconductor device includes a buried insulation layer, a semiconductor layer, a gate structure, a source doped region, and a drain doped region. The semiconductor layer is disposed on the buried insulation layer. The gate structure is disposed on the semiconductor layer. The semiconductor layer includes a body region disposed between the gate structure and the buried insulation layer. The source doped region and the drain doped region are disposed in the semiconductor layer. A first contact structure penetrates the buried insulation layer and contacts the body region. A second contact structure penetrates the buried insulation layer and is electrically connected with the source doped region. At least a part of the first contact structure overlaps the body region in a thickness direction of the buried insulation layer. The body region is electrically connected with the source doped region via the first contact structure and the second contact structure.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: September 1, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Su Xing, Ching-Yang Wen
  • Publication number: 20200075514
    Abstract: A radiofrequency device includes a buried insulation layer, a transistor, a contact structure, a connection bump, an interlayer dielectric layer, and a mold compound layer. The buried insulation layer has a first side and a second side opposite to the first side in a thickness direction of the buried insulation layer. The transistor is disposed on the first side of the buried insulation layer. The contact structure penetrates the buried insulation layer and is electrically connected with the transistor. The connection bump is disposed on the second side of the buried insulation layer and electrically connected with the contact structure. The interlayer dielectric layer is disposed on the first side of the buried insulation layer and covers the transistor. The mold compound layer is disposed on the interlayer dielectric layer. The mold compound layer may be used to improve operation performance and reduce manufacturing cost of the radiofrequency device.
    Type: Application
    Filed: September 27, 2018
    Publication date: March 5, 2020
    Inventors: Purakh Raj Verma, Wen-Shen Li, Ching-Yang Wen
  • Publication number: 20190355812
    Abstract: A semiconductor device and a method for manufacturing the semiconductor device are provided. The semiconductor device includes an insulating layer, a semiconductor layer, a plurality of isolation structures, a transistor, a first contact, a plurality of silicide layers, and a protective layer. The semiconductor layer is disposed on a front side of the insulating layer. The plurality of isolation structures are disposed in the semiconductor layer. The transistor is disposed on the semiconductor layer. The first contact is disposed beside the transistor and passes through one of the plurality of isolation structures and the insulating layer therebelow. The plurality of silicide layers are respectively disposed on a bottom surface of the first contact and disposed on a source, a drain, and a gate of the transistor. The protective layer is disposed between the first contact and the insulating layer.
    Type: Application
    Filed: June 25, 2018
    Publication date: November 21, 2019
    Applicant: United Microelectronics Corp.
    Inventors: Wen-Shen Li, Ching-Yang Wen, Purakh Raj Verma, Xingxing Chen, Chee-Hau Ng
  • Publication number: 20190252253
    Abstract: A semiconductor device includes a buried insulation layer, a semiconductor layer, a gate structure, a source doped region, and a drain doped region. The semiconductor layer is disposed on the buried insulation layer. The gate structure is disposed on the semiconductor layer. The semiconductor layer includes a body region disposed between the gate structure and the buried insulation layer. The source doped region and the drain doped region are disposed in the semiconductor layer. A first contact structure penetrates the buried insulation layer and contacts the body region. A second contact structure penetrates the buried insulation layer and is electrically connected with the source doped region. At least a part of the first contact structure overlaps the body region in a thickness direction of the buried insulation layer. The body region is electrically connected with the source doped region via the first contact structure and the second contact structure.
    Type: Application
    Filed: March 22, 2018
    Publication date: August 15, 2019
    Inventors: Purakh Raj Verma, Su Xing, Ching-Yang Wen
  • Publication number: 20190051666
    Abstract: A semiconductor device includes a substrate having a frontside and a backside. The substrate includes a semiconductor layer and a buried insulator layer. A transistor is disposed on the semiconductor layer. An interlayer dielectric (ILD) layer is disposed on the frontside and covering the transistor. A contact structure penetrates through the ILD layer, the semiconductor layer and the buried insulator layer. A silicide layer caps an end surface of the contact structure on the backside. A passive element is disposed on the backside of the substrate. The contact structure is electrically connected to the passive element.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 14, 2019
    Inventors: Wen-Shen Li, XIAOYUAN ZHI, XINGXING CHEN, Ching-Yang Wen
  • Publication number: 20080200039
    Abstract: The invention is directed to a nitridation process for a wafer. The nitridation process comprises steps of disposing the wafer on a top surface of a chuck in a nitridation process tool, wherein a plurality of concentric pipe coils is disposed close to the bottom surface of the chuck. Then, the chuck is heated and the chuck is regionally cooling down by applying a coolant into the concentric pipe coils, wherein the flow rates of the coolant in the concentric pipe coils are different from each other. Furthermore, a plasma nitridation process is performed on the wafer.
    Type: Application
    Filed: February 16, 2007
    Publication date: August 21, 2008
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wenshen Li, Chien-Kee Pang, Ching-Yang Wen, Teng-Ming Hoong