Patents by Inventor Ching-Yu Chang

Ching-Yu Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210376076
    Abstract: In an embodiment, a device includes: a power rail contact; an isolation region on the power rail contact; a first dielectric fin on the isolation region; a second dielectric fin adjacent the isolation region and the power rail contact; a first source/drain region on the second dielectric fin; and a source/drain contact between the first source/drain region and the first dielectric fin, the source/drain contact contacting a top surface of the first source/drain region, a side surface of the first source/drain region, and a top surface of the power rail contact.
    Type: Application
    Filed: December 18, 2020
    Publication date: December 2, 2021
    Inventors: Huan-Chieh Su, Cheng-Chi Chuang, Shang-Wen Chang, Yi-Hsun Chiu, Pei-Yu Wang, Ching-Wei Tsai, Chih-Hao Wang
  • Publication number: 20210376118
    Abstract: Structures and methods for controlling dopant diffusion and activation are disclosed. In one example, a semiconductor structure is disclosed. The semiconductor structure includes: a channel layer; a barrier layer over the channel layer; a gate electrode over the barrier layer; and a doped layer formed between the barrier layer and the gate electrode. The doped layer includes (a) an interface layer in contact with the barrier layer and (b) a main layer between the interface layer and the gate electrode. The doped layer comprises a dopant whose doping concentration in the interface layer is lower than that in the main layer.
    Type: Application
    Filed: August 18, 2021
    Publication date: December 2, 2021
    Inventors: Ching-Yu CHEN, Wei-Ting CHANG, Yu-Shine LIN, Jiang-He XIE
  • Publication number: 20210370657
    Abstract: A vacuum lamination system includes a film supply assembly, a film collection assembly, a lower lamination body, an upper lamination body, an air extractor, a moving assembly and a cutting assembly. The lower lamination body includes a first casing base and a lower heating assembly vertically movable and disposed in the first casing base. The lower heating assembly carries and moves the substrate so that the substrate is substantially flush with a top surface of the first casing base or retracted into the first casing base. The upper lamination body is vertically movable and disposed above the lower lamination body and includes an upper casing and an upper heating assembly disposed on the upper casing. The air extractor is connected to the lower lamination body. The moving assembly changes a height of a portion of the film. The cutting assembly cuts a portion of the film laminated onto the substrate.
    Type: Application
    Filed: July 8, 2020
    Publication date: December 2, 2021
    Applicant: ELEADTK CO., LTD.
    Inventors: Ching-Nan Chang, Sheng-Yu Lin, Ming-Chan Chen
  • Publication number: 20210364924
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist layer over a substrate and selectively exposing the photoresist layer to actinic radiation to form a latent pattern. The latent pattern is developed by applying a developer composition to the selectively exposed photoresist layer to form a pattern in the photoresist layer. The developer composition includes: a first solvent having Hansen solubility parameters of 18>?d>3, 7>?p>1, and 7>?h>1; an organic acid having an acid dissociation constant, pKa, of ?11<pKa<4; and a Lewis acid, wherein the organic acid and the Lewis acid are different.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 25, 2021
    Inventors: Chen-Yu LIU, Ming-Hui WENG, An-Ren ZI, Ching-Yu CHANG, Chin-Hsiang LIN
  • Publication number: 20210364916
    Abstract: A method of forming a pattern in a photoresist layer includes forming a photoresist layer over a substrate and selectively exposing the photoresist layer to actinic radiation to form a latent pattern. The latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern. The photoresist layer includes a photoresist composition including a photoactive compound and a polymer. The polymer has one or more of iodine or an iodo group attached to the polymer, and the polymer includes one or more monomer units having a crosslinker group, and the monomer units having a crosslinker group are one or more of: or the photoresist composition includes a photoactive compound, a polymer including an iodine or an iodo-group, and a crosslinker with two to six crosslinking groups.
    Type: Application
    Filed: November 5, 2020
    Publication date: November 25, 2021
    Inventors: Li-Po YANG, Ching-Yu CHANG
  • Publication number: 20210366711
    Abstract: In a method of manufacturing a semiconductor device, a metallic photoresist layer is formed over a target layer to be patterned, the metallic photoresist layer is selectively exposed to actinic radiation to form a latent pattern, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern. The metallic photo resist layer is an alloy layer of two or more metal elements, and the selective exposure changes a phase of the alloy layer.
    Type: Application
    Filed: April 9, 2021
    Publication date: November 25, 2021
    Inventors: An-Ren ZI, Chun-Chih HO, Yahru CHENG, Ching-Yu CHANG
  • Publication number: 20210349391
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist under-layer including a photoresist under-layer composition over a semiconductor substrate, and forming a photoresist layer including a photoresist composition over the photoresist under-layer. The photoresist layer is selectively exposed to actinic radiation and the photoresist layer is developed to form a pattern in the photoresist layer. The photoresist under-layer composition includes a polymer having pendant acid-labile groups, a polymer having crosslinking groups or a polymer having pendant carboxylic acid groups, an acid generator, and a solvent. The photoresist composition includes a polymer, a photoactive compound, and a solvent.
    Type: Application
    Filed: May 8, 2020
    Publication date: November 11, 2021
    Inventors: An-Ren ZI, Chin-Hsiang LIN, Ching-Yu CHANG
  • Publication number: 20210343529
    Abstract: A method for manufacturing an integrated circuit includes patterning a plurality of photomask layers over a substrate, partially backfilling the patterned plurality of photomask layers with a first material using atomic layer deposition, completely backfilling the patterned plurality of photomask layers with a second material using atomic layer deposition, removing the plurality of photomask layers to form a masking structure comprising at least one of the first and second materials, and transferring a pattern formed by the masking structure to the substrate and removing the masking structure. The first material includes a silicon dioxide, silicon carbide, or carbon material, and the second material includes a metal oxide or metal nitride material.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Inventors: Ching-Yu Chang, Jung-Hau Shiu, Jen Hung Wang, Tze-Liang Lee
  • Publication number: 20210341844
    Abstract: A method includes illuminating radiation to a resist layer over a substrate to pattern the resist layer. The patterned resist layer is developed by using a positive tone developer. The patterned resist layer is rinsed using a basic aqueous rinse solution. A pH value of the basic aqueous rinse solution is lower than a pH value of the developer, and a rinse temperature of rinsing the patterned resist layer is in a range of about 20° C. to about 40° C.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Hui WENG, Chen-Yu LIU, Cheng-Han WU, Ching-Yu CHANG, Chin-Hsiang LIN
  • Publication number: 20210341837
    Abstract: A method for manufacturing a semiconductor device includes forming a photoresist layer including a photoresist composition over a substrate. The photoresist layer is selectively exposed to actinic radiation to form a latent pattern and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a patterned photoresist. The photoresist composition includes a photoactive compound and a resin comprising a radical-active functional group and an acid labile group.
    Type: Application
    Filed: April 1, 2021
    Publication date: November 4, 2021
    Inventors: Siao-Shan WANG, Ching-Yu CHANG, Chin-Hsiang LIN
  • Publication number: 20210325782
    Abstract: A photoresist layer is formed over a wafer. The photoresist layer includes a metallic photoresist material and one or more additives. An extreme ultraviolet (EUV) lithography process is performed using the photoresist layer. The one or more additives include: a solvent having a boiling point greater than about 150 degrees Celsius, a photo acid generator, a photo base generator, a quencher, a photo de-composed base, a thermal acid generator, or a photo sensitivity cross-linker.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Inventors: An-Ren Zi, Joy Cheng, Ching-Yu Chang
  • Patent number: 11143963
    Abstract: The present disclosure provides NTD developers and corresponding lithography techniques that can overcome resolution, line edge roughness (LER), and sensitivity (RLS) tradeoff barriers particular to extreme ultraviolet (EUV) technologies, thereby achieving high patterning fidelity for advanced technology nodes. An exemplary lithography method includes forming a negative tone resist layer over a workpiece; exposing the negative tone resist layer to EUV radiation; and removing an unexposed portion of the negative tone resist layer in a negative tone developer, thereby forming a patterned negative tone resist layer. The negative tone developer includes an organic solvent having a log P value greater than 1.82. The organic solvent is an ester acetate derivative represented by R1COOR2. R1 and R2 are hydrocarbon chains having four or less carbon atoms. In some implementations, R1, R2, or both R1 and R2 are propyl functional groups, such as n-propyl, isopropyl, or 2-methylpropyl.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: October 12, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Yu Liu, Wei-Han Lai, Tzu-Yang Lin, Ming-Hui Weng, Ching-Yu Chang, Chin-Hsiang Lin
  • Publication number: 20210311105
    Abstract: A test apparatus includes a tray including at least a first region and a second region, and a cap disposed over the tray. The cap includes a cap body, and at least a first magnet and a second magnet disposed over the cap body. The first magnet is configured to provide a first magnetic field to the first region of the tray, and the second magnet is configured to provide a second magnetic field to the second region of the tray. A strength of the first magnetic field is different from a strength of the second magnetic field.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 7, 2021
    Inventors: HARRY-HAK-LAY CHUANG, TIEN-WEI CHIANG, CHIA YU WANG, MENG-CHUN SHIH, CHING-HUANG WANG, CHIH-YANG CHANG, CHIA-HSIANG CHEN, CHIH-HUI WENG
  • Publication number: 20210311388
    Abstract: Manufacturing semiconductor device includes forming photoresist layer. Photoresist layer is selectively exposed to actinic radiation and developed to form pattern. Photoresist composition includes: iodine-containing sensitizer, photoactive compound, polymer.
    Type: Application
    Filed: February 5, 2021
    Publication date: October 7, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Han LAI, Li-Po YANG, Shang-Wern CHANG, Ching-Yu CHANG, Tzu-Yang LIN, Chin-Hsiang LIN
  • Publication number: 20210311393
    Abstract: A photoresist composition includes a photoactive compound and a polymer. The polymer has a polymer backbone including one or more groups selected from: The polymer backbone includes at least one group selected from B, C-1, or C-2, wherein ALG is an acid labile group, and X is linking group.
    Type: Application
    Filed: January 15, 2021
    Publication date: October 7, 2021
    Inventors: Tzu-Yang LIN, Ching-Yu CHANG, Chin-Hsiang LIN
  • Publication number: 20210313220
    Abstract: A method for forming openings in an underlayer includes: forming a photoresist layer on an underlayer formed on a substrate; exposing the photoresist layer; forming photoresist patterns by developing the exposed photoresist layer, the photoresist patterns covering regions of the underlayer in which the openings are to be formed; forming a liquid layer over the photoresist patterns; after forming the liquid layer, performing a baking process so as to convert the liquid layer to an organic layer in a solid form; performing an etching back process to remove a portion of the organic layer on a level above the photoresist patterns; removing the photoresist patterns, so as to expose portions of the underlayer by the remaining portion of the organic layer; forming the openings in the underlayer by using the remaining portion of the organic layer as an etching mask; and removing the remaining portion of the organic layer.
    Type: Application
    Filed: June 14, 2021
    Publication date: October 7, 2021
    Inventors: Tzu-Yang LIN, Cheng-Han WU, Ching-Yu CHANG, Chin-Hsiang LIN
  • Patent number: 11137685
    Abstract: The present disclosure provides a method that includes coating an edge portion of a wafer by a first chemical solution including a chemical mixture of an acid-labile group, a solubility control unit and a thermal acid generator; curing the first chemical solution to form a first protecting layer on the edge portion of the wafer; coating a resist layer on a front surface of the wafer; removing the first protecting layer by a first removing solution; and performing an exposing process to the resist layer.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: October 5, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: An-Ren Zi, Joy Cheng, Ching-Yu Chang, Chin-Hsiang Lin
  • Publication number: 20210302833
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist layer over a substrate, including combining a first precursor and a second precursor in a vapor state to form a photoresist material, and depositing the photoresist material over the substrate. A protective layer is formed over the photoresist layer. The photoresist layer is selectively exposed to actinic radiation through the protective layer to form a latent pattern in the photoresist layer. The protective layer is removed, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Application
    Filed: October 15, 2020
    Publication date: September 30, 2021
    Inventors: Ming-Hui WENG, Chen-Yu LIU, Chih-Cheng LIU, Yi-Chen KUO, Jia-Lin WEI, Yen-Yu CHEN, Jr-Hung LI, Yahru CHENG, Chi-Ming YANG, Tze-Liang LEE, Ching-Yu CHANG
  • Publication number: 20210305040
    Abstract: A method of forming a pattern in a photoresist layer includes forming a photoresist layer over a substrate, and reducing moisture or oxygen absorption characteristics of the photoresist layer. The photoresist layer is selectively exposed to actinic radiation to form a latent pattern, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Application
    Filed: January 15, 2021
    Publication date: September 30, 2021
    Inventors: Yi-Chen KUO, Chih-Cheng LIU, Ming-Hui WENG, Jia-Lin WEI, Yen-Yu CHEN, Jr-Hung LI, Yahru CHENG, Chi-Ming YANG, Tze-Liang LEE, Ching-Yu CHANG
  • Publication number: 20210302839
    Abstract: Method of manufacturing semiconductor device includes forming photoresist layer over substrate. Forming photoresist layer includes combining first precursor and second precursor in vapor state to form photoresist material, wherein first precursor is organometallic having formula: MaRbXc, where M at least one of Sn, Bi, Sb, In, Te, Ti, Zr, Hf, V, Co, Mo, W, Al, Ga, Si, Ge, P, As, Y, La, Ce, Lu; R is substituted or unsubstituted alkyl, alkenyl, carboxylate group; X is halide or sulfonate group; and 1?a?2, b?1, c?1, and b+c?5. Second precursor is at least one of an amine, a borane, a phosphine. Forming photoresist layer includes depositing photoresist material over the substrate. The photoresist layer is selectively exposed to actinic radiation to form latent pattern, and the latent pattern is developed by applying developer to selectively exposed photoresist layer to form pattern.
    Type: Application
    Filed: January 15, 2021
    Publication date: September 30, 2021
    Inventors: Chih-Cheng LIU, Yi-Chen KUO, Jia-Lin WEI, Ming-Hui WENG, Yen-Yu CHEN, Jr-Hung LI, Yahru CHENG, Chi-Ming YANG, Tze-Liang LEE, Ching-Yu CHANG