Patents by Inventor Chinlon Lin

Chinlon Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7892855
    Abstract: Disclosed is an optical sensing device including a source unit providing a beam of light with continuously modulated phase retardation between p- and s-polarization components of the light by employing a LCM; a reference unit receiving a first part of the light to provide a reference signal; a SPR sensing unit receiving a second part of the light to induce a phase retardation change between the p- and s-polarization components due to SPR associated with a sample; a probe unit receiving the light after SPR to provide a probe signal; and a detection unit connected to the reference unit and the probe unit to detect characteristics of the sample by comparing the reference signal with the probe signal. By using active phase modulation technologies and differential phase measurement, it is possible to fulfill chemical and biological detection.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: February 22, 2011
    Assignee: The Chinese University of Hong Kong
    Inventors: Ho Pui Ho, Shu Yuen Wu, Chinlon Lin, Siu Kai Kong
  • Patent number: 7623246
    Abstract: Disclosed is an optical sensing device, which comprises a light source emitting a light; a beam splitter; an SPR sensor unit comprising a sensing surface; and a detecting mechanism; and a converting unit converting the first beam and the second beam from the optical device into a two-dimensional interference fringe pattern. From the above-mentioned configuration, an extra phase shift of a detection beam in SPR phase measurement is obtained. The differential measurement approach has shown to achieve a sensitivity figure significantly better than the best result that can be obtained from the prior art in the field of the measurement based on an SPR sensor.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: November 24, 2009
    Assignee: The Chinese University of Hong Kong
    Inventors: Ho Pui Ho, Chi Lok Wong, Shu Yuen Wu, Wing Cheung Law, Chinlon Lin, Siu Kai Kong
  • Publication number: 20090086210
    Abstract: Disclosed is an optical sensing device including a source unit providing a beam of light with continuously modulated phase retardation between p- and s-polarization components of the light by employing a LCM; a reference unit receiving a first part of the light to provide a reference signal; a SPR sensing unit receiving a second part of the light to induce a phase retardation change between the p- and s-polarization components due to SPR associated with a sample; a probe unit receiving the light after SPR to provide a probe signal; and a detection unit connected to the reference unit and the probe unit to detect characteristics of the sample by comparing the reference signal with the probe signal. By using active phase modulation technologies and differential phase measurement, it is possible to fulfill chemical and biological detection.
    Type: Application
    Filed: August 4, 2008
    Publication date: April 2, 2009
    Applicant: The Chinese University of Hong Kong
    Inventors: Ho Pui Ho, Shu Yuen Wu, Chinlon Lin, Siu Kai Kong
  • Publication number: 20080304072
    Abstract: Disclosed is an optical sensing device, which comprises a light source emitting a light; a beam splitter; an SPR sensor unit comprising a sensing surface; and a detecting mechanism; and a converting unit converting the first beam and the second beam from the optical device into a two-dimensional interference fringe pattern. From the above-mentioned configuration, an extra phase shift of a detection beam in SPR phase measurement is obtained. The differential measurement approach has shown to achieve a sensitivity figure significantly better than the best result that can be obtained from the prior art in the field of the measurement based on an SPR sensor.
    Type: Application
    Filed: March 11, 2008
    Publication date: December 11, 2008
    Applicant: The Chinese University of Hong Kong
    Inventors: Ho Pui Ho, Chi Lok Wong, Shu Yuen Wu, Wing Cheung Law, Chinlon Lin, Sui Kai Kong
  • Patent number: 7407817
    Abstract: Disclosed is an optical sensing device including a source unit providing a beam of light with continuously modulated phase retardation between p- and s-polarization components of the light by employing a LCM; a reference unit receiving a first part of the light to provide a reference signal; a SPR sensing unit receiving a second part of the light to induce a phase retardation change between the p- and s-polarization components due to SPR associated with a sample; a probe unit receiving the light after SPR to provide a probe signal; and a detection unit connected to the reference unit and the probe unit to detect characteristics of the sample by comparing the reference signal with the probe signal. By using active phase modulation technologies and differential phase measurement, it is possible to fulfill chemical and biological detection.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: August 5, 2008
    Assignee: The Chinese University of Hong Kong
    Inventors: Ho Pui Ho, Shu Yuen Wu, Chinlon Lin, Siu Kai Kong
  • Patent number: 7365855
    Abstract: Disclosed is an optical sensing device, which comprises a light source emitting a light; a beam splitter; an SPR sensor unit comprising a sensing surface; and a detecting mechanism; and a converting unit converting the first beam and the second beam from the optical device into a two-dimensional interference fringe pattern. From the above-mentioned configuration, an extra phase shift of a detection beam in SPR phase measurement is obtained. The differential measurement approach has shown to achieve a sensitivity figure significantly better than the best result that can be obtained from the prior art in the field of the measurement based on an SPR sensor.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: April 29, 2008
    Assignee: The Chinese University of Hong Kong
    Inventors: Ho Pui Ho, Chi Lok Wong, Shu Yuen Wu, Wing Cheung Law, Chinlon Lin, Siu Kai Kong
  • Publication number: 20070166763
    Abstract: Disclosed is an optical sensing device including a source unit providing a beam of light with continuously modulated phase retardation between p- and s-polarization components of the light by employing a LCM; a reference unit receiving a first part of the light to provide a reference signal; a SPR sensing unit receiving a second part of the light to induce a phase retardation change between the p- and s-polarization components due to SPR associated with a sample; a probe unit receiving the light after SPR to provide a probe signal; and a detection unit connected to the reference unit and the probe unit to detect characteristics of the sample by comparing the reference signal with the probe signal. By using active phase modulation technologies and differential phase measurement, it is possible to fulfill chemical and biological detection.
    Type: Application
    Filed: January 19, 2006
    Publication date: July 19, 2007
    Applicant: The Chinese University of Hong Kong
    Inventors: Ho Ho, Shu Wu, Chinlon Lin, Siu Kong
  • Publication number: 20070008546
    Abstract: Disclosed is an optical sensing device, which comprises a light source emitting a light; a beam splitter; an SPR sensor unit comprising a sensing surface; and a detecting mechanism; and a converting unit converting the first beam and the second beam from the optical device into a two-dimensional interference fringe pattern. From the above-mentioned configuration, an extra phase shift of a detection beam in SPR phase measurement is obtained. The differential measurement approach has shown to achieve a sensitivity figure significantly better than the best result that can be obtained from the prior art in the field of the measurement based on an SPR sensor.
    Type: Application
    Filed: July 8, 2005
    Publication date: January 11, 2007
    Applicant: The Chinese University of Hong Kong
    Inventors: Ho Ho, Chi Wong, Shu Wu, Wing Law, Chinlon Lin, Sui Kong
  • Patent number: 7085039
    Abstract: A hybrid Raman-EDFA provides gain equalization over the C-band and L-band. The hybrid Raman-EDFA includes a Raman section producing a Raman gain and an EDFA section producing an EDFA gain complementing the Raman gain. The EDFA section preferably includes a highly inverted, single-stage EDFA to produce the complementing EDFA gain shape. One embodiment of the EDFA section includes a high return loss termination located after the erbium fiber to receive unabsorbed pump power. Multiple hybrid Raman-EDFAs can be connected in an amplifier chain in a transmission system. The transmission system preferably provides a dispersion map including regular composite fiber spans followed by at least one compensating span of negative dispersion fibers. The Raman sections of the hybrid Raman-EDFAs are preferably coupled to negative dispersion fiber in the transmission system.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: August 1, 2006
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Dmitri Foursa, Morten Nissov, Alexei N. Pilipetskii, Michael A. Mills, Chinlon Lin, Bo Pedersen
  • Patent number: 6731381
    Abstract: A test apparatus includes a broadband noise source, a test station, and a spectrum analyzer. A method using the test apparatus to measure the spectral gain of an erbium doped fiber amplifier (EDFA) under test includes steps of providing an optical signal from a broadband noise source to an input of the EDFA under test, measuring a power at a test wavelength at an output of the EDFA under test, adjusting the test wavelength, and repeating the steps of measuring and adjusting for a predetermined number of times.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: May 4, 2004
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Chinlon Lin, Michael Mills, Morten Nissov
  • Patent number: 6697575
    Abstract: A method of increasing capacity on a long-haul undersea cable system having at least one optical fiber, said method comprising interleaving counter-propagating forward-propagating and backward-propagating signals in forward and backward channels on a common optical fiber, wherein the wavelength offset between said forward and backward channels is typically half of the channel spacing of co-propagating signals.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: February 24, 2004
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Anhui Liang, Chinlon Lin, Bo Pedersen
  • Publication number: 20030179440
    Abstract: A hybrid Raman-EDFA provides gain equalization over the C-band and L-band. The hybrid Raman-EDFA includes a Raman section producing a Raman gain and an EDFA section producing an EDFA gain complimenting the Raman gain. The EDFA section preferably includes a highly inverted, single-stage EDFA to produce the complimenting EDFA gain shape. One embodiment of the EDFA section includes a high return loss termination located after the erbium fiber to receive unabsorbed pump power. Multiple hybrid Raman-EDFAs can be connected in an amplifier chain in a transmission system. The transmission system preferably provides a dispersion map including regular composite fiber spans followed by at least one compensating span of negative dispersion fibers. The Raman sections of the hybrid Raman-EDFAs are preferably coupled to negative dispersion fiber in the transmission system.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 25, 2003
    Inventors: Dmitri Foursa, Morten Nissov, Alexei N. Pilipetskii, Michael A. Mills, Chinlon Lin, Bo Pedersen
  • Patent number: 6577424
    Abstract: A dispersion compensator provides dispersion compensation to a WDM optical signal having a plurality of channels located at different wavelengths and traveling in an optical transmission path. The dispersion compensator includes an optical splitter adapted to receive the WDM optical signal. The optical splitter has first and second output ports such that a subset of the plurality of channels are directed along the first output port and remaining ones of the plurality of channels are directed along the second output port. A dispersion compensating element is coupled to the first output port and a multiplexing element having a first input port is coupled to second output port of the optical splitter. The multiplexing element also has a second input port coupled to the dispersion compensating element and an output port on which the subset of channels and the remaining ones of the channels are recombined.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: June 10, 2003
    Assignee: Tyco Telecommunications (US) Inc.
    Inventor: Chinlon Lin
  • Patent number: 6567577
    Abstract: A WDM optical communication system is provided that includes a transmitter and a receiver. An optical fiber transmission path couples the transmitter to the receiver. The transmission path includes at least one repeater having an optical amplifier located therein. A dispersion compensator is disposed at an intermediate point along the transmission path. The intermediate point is located outside of the repeater. The compensator includes a wavelength routing device for dividing a signal having a prescribed bandwidth into a plurality of distinct sub-bands. A plurality of output paths is provided for respectively receiving the plurality of distinct sub-bands. The dispersion compensator also includes a dispersion compensating optical element coupled to each of the output paths. Each dispersion compensating optical element substantially compensates for dispersion at a prescribed wavelength within the bandpass of its respective sub-band.
    Type: Grant
    Filed: July 14, 1998
    Date of Patent: May 20, 2003
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Stuart M. Abbott, Neal Bergano, Stephen G. Evangelides, Ekaterina Golovchenko, George Harvey, Franklin W. Kerfoot, III, Chinlon Lin, Bo Pedersen
  • Publication number: 20020196491
    Abstract: A passive optical network in which a plurality of wavelength division multiplexed optical signals are exchanged between terminals. At an upstream node such, for example, as a central office, a first plurality of coarsely wavelength division (CWDM) multiplexed optical signals are launched onto or otherwise supplied to a first optical fiber, which fiber may carry optical signals in one or both of the upstream and downstream directions. The downstream or first plurality of coarsely wavelength division multiplexed optical signals, carried via the first optical fiber, are supplied to and distributed by a passive optical node to respective optical network terminals.
    Type: Application
    Filed: June 25, 2001
    Publication date: December 26, 2002
    Inventors: Kung Li Deng, Chun-Kit Chan, Chinlon Lin
  • Publication number: 20020118440
    Abstract: A test apparatus includes a broadband noise source, a test station, and a spectrum analyzer. A method using the test apparatus to measure the spectral gain of an erbium doped fiber amplifier (EDFA) under test includes steps of providing an optical signal from a broadband noise source to an input of the EDFA under test, measuring a power at a test wavelength at an output of the EDFA under test, adjusting the test wavelength, and repeating the steps of measuring and adjusting for a predetermined number of times.
    Type: Application
    Filed: February 27, 2001
    Publication date: August 29, 2002
    Inventors: Chinlon Lin, Michael Mills, Morten Nissov
  • Patent number: 6385366
    Abstract: A method of operating a hybrid fiber coax transmission system to provide Fiber to the Home Office (FTTHO) functionality comprises directing, via a fiber portion of the transmission system, first wavelength division multiplexed (WDM) optical signals corresponding to a first category of subscriber service. The first wavelength division multiplexed WDM optical signals, which are within a first wavelength band, originate at a primary hub or headend and are sent to a plurality of fiber nodes where they are converted to respective electrical signals. The converted electrical signals are transmitted, via a coaxial cable portion of the transmission system, to the homes of individual subscribers. The method further comprises a step of exchanging, via a fiber portion of the transmission system, demultiplexed second WDM optical signals corresponding to fiber-to-the-home office (FTTHO) service between a headend and the home of at least one of the individual subscribers.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: May 7, 2002
    Assignee: Jedai Broadband Networks Inc.
    Inventor: Chinlon Lin
  • Publication number: 20010028758
    Abstract: A WDM optical communication system is provided that includes a transmitter and a receiver. An optical fiber transmission path couples the transmitter to the receiver. The transmission path includes at least one repeater having an optical amplifier located therein. A dispersion compensator is disposed at an intermediate point along the transmission path. The intermediate point is located outside of the repeater. The compensator includes a wavelength routing device for dividing a signal having a prescribed bandwidth into a plurality of distinct sub-bands. A plurality of output paths is provided for respectively receiving the plurality of distinct sub-bands. The dispersion compensator also includes a dispersion compensating optical element coupled to each of the output paths. Each dispersion compensating optical element substantially compensates for dispersion at a prescribed wavelength within the bandpass of its respective sub-band.
    Type: Application
    Filed: February 8, 2001
    Publication date: October 11, 2001
    Inventors: Stuart M. Abbott, Neal Bergano, Stephen G. Evangelides, Ekaterina Golovchenko, George Harvey, Franklin W. Kerfoot, Chinlon Lin, Bo Pedersen
  • Publication number: 20010003549
    Abstract: A WDM optical communication system is provided that includes a transmitter and a receiver. An optical fiber transmission path couples the transmitter to the receiver. The transmission path includes at least one repeater having an optical amplifier located therein. A dispersion compensator is disposed at an intermediate point along the transmission path. The intermediate point is located outside of the repeater. The compensator includes a wavelength routing device for dividing a signal having a prescribed bandwidth into a plurality of distinct sub-bands. A plurality of output paths is provided for respectively receiving the plurality of distinct sub-bands. The dispersion compensator also includes a dispersion compensating optical element coupled to each of the output paths. Each dispersion compensating optical element substantially compensates for dispersion at a prescribed wavelength within the bandpass of its respective sub-band.
    Type: Application
    Filed: July 14, 1998
    Publication date: June 14, 2001
    Inventors: STUART M. ABBOTT, NEAL S. BERGANO, STEPHEN G. EVANGELIDES, EKATERINA GOLOVCHENKO, GEORGE HARVEY, FRANKLIN W. KERFOOT, CHINLON LIN, BO PEDERSEN
  • Patent number: 5392154
    Abstract: In a multiwavelength lightwave communications system automatic self-power regulation on a channel-by-channel basis is achieved with a cascade of multiwavelength amplifier modules (200), wherein each multiwavelength amplifier module in the cascade includes a plurality of pump-shared parallel fiber amplifiers (208) operated in gain-saturation and connected between an optical demultiplexer (203) and multiplexer (209). An optional first gain stage (202) improves performance with higher optical signal-to-noise ratio. By self-regulating the power in each channel, the communications system is scalable, allowing the system to grow without deleterious effects due to power spread.
    Type: Grant
    Filed: March 30, 1994
    Date of Patent: February 21, 1995
    Assignee: Bell Communications Research, Inc.
    Inventors: Gee-Kung Chang, Lars E. Eskildsen, Evan L. Goldstein, Muhammed Z. Iqbal, Chinlon Lin