Patents by Inventor Chintan S. Thakkar

Chintan S. Thakkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12237589
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: February 25, 2025
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 12088360
    Abstract: Embodiments may relate to a baseband module with communication pathways for a first data signal and a second data signal. The baseband module may also include a finite impulse response (FIR) filter in a communication path between the first signal input and the second signal output. Other embodiments may be described or claimed.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: September 10, 2024
    Assignee: Intel Corporation
    Inventors: Henning Braunisch, Georgios Dogiamis, Diego Correas-Serrano, Neelam Prabhu Gaunkar, Telesphor Kamgaing, Cooper S. Levy, Chintan S. Thakkar, Stefano Pellerano
  • Publication number: 20240243477
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: February 15, 2024
    Publication date: July 18, 2024
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Marian Verhelst, Yossi Tsfati, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11757681
    Abstract: To compensate for intersymbol interference, a serial data receiver circuit included in a computer system may include an equalizer circuit that includes a digital-to-analog converter circuit. Based on previously received symbols, the equalizer circuit modifies a signal received via a communication channel or link prior to clock and data recovery. In cases when the digital-to-analog converter circuit becomes saturated, the equalizer circuit additionally uses a dither signal to modify the received signal.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: September 12, 2023
    Assignee: Apple Inc.
    Inventors: Jose A. Tierno, Haiming Jin, Brian S. Leibowitz, Sanjeev K. Maheshwari, Chintan S. Thakkar
  • Patent number: 11664568
    Abstract: Embodiments disclosed herein include waveguides. In an embodiment, a waveguide comprises a conductive shell and a first ridge within the conductive shell. In an embodiment, the first ridge extends away from the conductive shell. In an embodiment, the waveguide further comprises a first core over the first ridge, where the first core comprises a first dielectric material with a first permittivity. In an embodiment, the waveguide may further comprise a second core embedded in the first core, where the second core comprises a second dielectric material with a second permittivity that is greater than the first permittivity.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: May 30, 2023
    Assignee: Intel Corporation
    Inventors: Cooper S. Levy, Chintan S. Thakkar, James E. Jaussi, Bryan K. Casper
  • Publication number: 20230145401
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220384956
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11424539
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20200395649
    Abstract: Embodiments disclosed herein include waveguides. In an embodiment, a waveguide comprises a conductive shell and a first ridge within the conductive shell. In an embodiment, the first ridge extends away from the conductive shell. In an embodiment, the waveguide further comprises a first core over the first ridge, where the first core comprises a first dielectric material with a first permittivity. In an embodiment, the waveguide may further comprise a second core embedded in the first core, where the second core comprises a second dielectric material with a second permittivity that is greater than the first permittivity.
    Type: Application
    Filed: June 11, 2019
    Publication date: December 17, 2020
    Inventors: Cooper S. LEVY, Chintan S. THAKKAR, James E. JAUSSI, Bryan K. CASPER
  • Publication number: 20200304171
    Abstract: Embodiments may relate to a baseband module with communication pathways for a first data signal and a second data signal. The baseband module may also include a finite impulse response (FIR) filter in a communication path between the first signal input and the second signal output. Other embodiments may be described or claimed.
    Type: Application
    Filed: June 9, 2020
    Publication date: September 24, 2020
    Applicant: Intel Corporation
    Inventors: Henning Braunisch, Georgios Dogiamis, Diego Correas-Serrano, Neelam Prabhu-Gaunkar, Telesphor Kamgaing, Cooper S. Levy, Chintan S. Thakkar, Stefano Pellerano
  • Publication number: 20200091608
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 20, 2017
    Publication date: March 19, 2020
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 10003479
    Abstract: A multi-phase partial response receiver supports various incoming data rates by sampling PrDFE output values at a selected one of at least two clock phases. The receiver includes a calibration circuit that performs a timing analysis of critical data paths in the circuit, and this analysis is then used to select the particular clock phase used to latch the output values. These techniques permit the multiplexer outputs from for each phase of the partial response receiver to directly drive selection of a multiplexer for the ensuing phase, i.e., by avoiding regions of instability or uncertainty in the respective multiplexer outputs.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: June 19, 2018
    Assignee: Rambus Inc.
    Inventors: Chintan S. Thakkar, Kun-Yung Chang, Ting Wu
  • Patent number: 9929775
    Abstract: Embodiments of the present disclosure provide apparatuses and systems for proximity communications. The apparatus may include an integrated circuit (IC) package with a central processing unit (CPU) circuit, an input-output (I/O) circuit coupled with the CPU circuit, and a dielectric electromagnetic waveguide coupled with the I/O circuit, to enable communications between the CPU circuit and another apparatus. In another instance, the apparatus may include a plurality of coupler pads disposed on a first surface of the apparatus; and a processor electrically coupled with the coupler pads. One of the coupler pads may form capacitive coupling with one of coupler pads disposed on a second surface of another apparatus, in response to a placement of the first surface in at least partial contact with the second surface, to enable proximity data communication between the processor and the other apparatus. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: March 27, 2018
    Assignee: Intel Corporation
    Inventors: Shreyas Sen, Chintan S. Thakkar, Bryan K. Casper, James E. Jaussi
  • Publication number: 20180054330
    Abstract: A multi-phase partial response receiver supports various incoming data rates by sampling PrDFE output values at a selected one of at least two clock phases. The receiver includes a calibration circuit that performs a timing analysis of critical data paths in the circuit, and this analysis is then used to select the particular clock phase used to latch the output values. These techniques permit the multiplexer outputs from for each phase of the partial response receiver to directly drive selection of a multiplexer for the ensuing phase, i.e., by avoiding regions of instability or uncertainty in the respective multiplexer outputs.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 22, 2018
    Inventors: Chintan S. Thakkar, Kun-Yung Chang, Ting Wu
  • Patent number: 9768986
    Abstract: A multi-phase partial response receiver supports various incoming data rates by sampling PrDFE output values at a selected one of at least two clock phases. The receiver includes a calibration circuit that performs a timing analysis of critical data paths in the circuit, and this analysis is then used to select the particular clock phase used to latch the output values. These techniques permit the multiplexer outputs from for each phase of the partial response receiver to directly drive selection of a multiplexer for the ensuing phase, i.e., by avoiding regions of instability or uncertainty in the respective multiplexer outputs.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: September 19, 2017
    Assignee: Rambus Inc.
    Inventors: Chintan S. Thakkar, Kun-Yung Chang, Ting Wu
  • Patent number: 9678619
    Abstract: A framework is provided for obtaining window information. The window information can be applied to different assignment models to assign windows to different groups. A group may correspond to a task being performed by a user. The window information can be semantic or temporal information captured as window events and properties of windows whose events are captured. Temporal information can be information about switches between windows. Semantic information can be window titles. Temporal information, semantic information, or both, can be used to assign windows to groups.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: June 13, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Nuria Oliver, Arungunram Surendran, Chintan S. Thakkar, Gregory Smith
  • Publication number: 20170083170
    Abstract: A framework is provided for obtaining window information. The window information can be applied to different assignment models to assign windows to different groups. A group may correspond to a task being performed by a user. The window information can be semantic or temporal information captured as window events and properties of windows whose events are captured. Temporal information can be information about switches between windows. Semantic information can be window titles. Temporal information, semantic information, or both, can be used to assign windows to groups.
    Type: Application
    Filed: December 1, 2016
    Publication date: March 23, 2017
    Inventors: Nuria Oliver, Arungunram Surendran, Chintan S. Thakkar, Gregory Smith
  • Publication number: 20170070369
    Abstract: A multi-phase partial response receiver supports various incoming data rates by sampling PrDFE output values at a selected one of at least two clock phases. The receiver includes a calibration circuit that performs a timing analysis of critical data paths in the circuit, and this analysis is then used to select the particular clock phase used to latch the output values. These techniques permit the multiplexer outputs from for each phase of the partial response receiver to directly drive selection of a multiplexer for the ensuing phase, i.e., by avoiding regions of instability or uncertainty in the respective multiplexer outputs.
    Type: Application
    Filed: July 13, 2016
    Publication date: March 9, 2017
    Inventors: Chintan S. Thakkar, Kun-Yung Chang, Ting Wu
  • Patent number: 9542066
    Abstract: A framework is provided for obtaining window information. The window information can be applied to different assignment models to assign windows to different groups. A group may correspond to a task being performed by a user. The window information can be semantic or temporal information captured as window events and properties of windows whose events are captured. Temporal information can be information about switches between windows. Semantic information can be window titles. Temporal information, semantic information, or both, can be used to assign windows to groups.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: January 10, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Nuria Oliver, Arungunram Surendran, Chintan S. Thakkar, Gregory Smith