Patents by Inventor Chloe Baldasseroni

Chloe Baldasseroni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10378107
    Abstract: A showerhead in a semiconductor processing apparatus can include faceplate through-holes configured to improve the flow uniformity during atomic layer deposition. The showerhead can include a faceplate having a plurality of through-holes for distributing gas onto a substrate, where the faceplate includes small diameter through-holes. For example, the diameter of each of the through-holes can be less than about 0.04 inches. In addition or in the alternative, the showerhead can include edge through-holes positioned circumferentially along a ring having a diameter greater than a diameter of the substrate being processed. The showerhead can be a low volume showerhead and can include a baffle proximate one or more gas inlets in communication with a plenum volume of the showerhead. The faceplate with small diameter through-holes and/or edge through-holes can improve overall film non-uniformity, improve azimuthal film non-uniformity at the edge of the substrate, and enable operation at higher RF powers.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 13, 2019
    Assignee: Lam Research Corporation
    Inventors: Ramesh Chandrasekharan, Saangrut Sangplung, Shankar Swaminathan, Frank Pasquale, Hu Kang, Adrien LaVoie, Edward Augustyniak, Yukinori Sakiyama, Chloe Baldasseroni, Seshasayee Varadarajan, Basha Sajjad, Jennifer L. Petraglia
  • Patent number: 10323323
    Abstract: A gas delivery system includes a first valve including an inlet that communicates with a first gas source. A first inlet of a second valve communicates with an outlet of the first valve and a second inlet of the second valve communicates with a second gas source. An inlet of a third valve communicates with a third gas source. A connector includes a first gas channel and a cylinder defining a second gas channel. The cylinder and the first gas channel collectively define a flow channel between an outer surface of the cylinder and an inner surface of the first gas channel. The flow channel communicates with the outlet of the third valve and the first end of the second gas channel. A third gas channel communicates with the second gas channel, with the outlet of the second valve and with a gas distribution device of a processing chamber.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: June 18, 2019
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Ramesh Chandrasekharan, Jennifer O'Loughlin, Saangrut Sangplung, Shankar Swaminathan, Frank Pasquale, Chloe Baldasseroni, Adrien LaVoie
  • Publication number: 20190085448
    Abstract: Methods and apparatuses for performing atomic layer deposition are provided. A method may include determining an amount of accumulated deposition material currently on an interior region of a deposition chamber interior, wherein the amount of accumulated deposition material changes over the course of processing a batch of substrates; applying the determined amount of accumulated deposition material to a relationship between a number of ALD cycles required to achieve a target deposition thickness, and a variable representing an amount of accumulated deposition material, wherein the applying returns a compensated number of ALD cycles for producing the target deposition thickness given the amount of accumulated deposition material currently on the interior region of the deposition chamber interior; and performing the compensated number of ALD cycles on one or more substrates in the batch.
    Type: Application
    Filed: October 16, 2017
    Publication date: March 21, 2019
    Inventors: Richard Phillips, Chloe Baldasseroni, Nishanth Manjunath
  • Publication number: 20190040528
    Abstract: The present inventors have conceived of a multi-stage process gas delivery system for use in a substrate processing apparatus. In certain implementations, a first process gas may first be delivered to a substrate in a substrate processing chamber. A second process gas may be delivered, at a later time, to the substrate to aid in the even dosing of the substrate. Delivery of the first process gas and the second process gas may cease at the same time or may cease at separate times.
    Type: Application
    Filed: September 13, 2018
    Publication date: February 7, 2019
    Inventors: Purushottam Kumar, Hu Kang, Adrien LaVoie, Yi Chung Chiu, Frank L. Pasquale, Jun Qian, Chloe Baldasseroni, Shankar Swaminathan, Karl F. Leeser, David Charles Smith, Wei-Chih Lai
  • Publication number: 20180334746
    Abstract: A pedestal assembly for a plasma processing system is provided. The assembly includes a pedestal with central top surface, e.g., mesa, and the central top surface extends from a center of the central top surface to an outer diameter of the central top surface. An annular surface surrounds the central top surface. The annular top surface is disposed at step down from the central top surface. A plurality of wafer supports project out of the central top surface at a support elevation distance above the central top surface. The plurality of wafer supports are evenly arranged around an inner radius of the center top surface. The inner radius is located between the center of the central top surface and less than a mid-radius that is approximately half way between the center of the pedestal and the outer diameter of the central top surface. A carrier ring configured for positioning over the annular surface of the pedestal is provided.
    Type: Application
    Filed: May 22, 2017
    Publication date: November 22, 2018
    Inventors: Patrick Breiling, Ramesh Chandrasekharan, Chloe Baldasseroni, Sung Je Kim, lshtak Karim, Mike Roberts, Richard Phillips, Purushottam Kumar, Adrien LaVoie
  • Patent number: 10134579
    Abstract: Methods and apparatuses for forming high modulus silicon oxide spacers using atomic layer deposition are provided. Methods involve depositing at high temperature, using high plasma energy, and post-treating deposited silicon oxide using ultraviolet radiation. Such silicon oxide spacers are suitable for use as masks in multiple patterning applications to prevent pitch walking.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: November 20, 2018
    Assignee: Lam Research Corporation
    Inventors: Chloe Baldasseroni, Shankar Swaminathan
  • Patent number: 10100407
    Abstract: The present inventors have conceived of a multi-stage process gas delivery system for use in a substrate processing apparatus. In certain implementations, a first process gas may first be delivered to a substrate in a substrate processing chamber. A second process gas may be delivered, at a later time, to the substrate to aid in the even dosing of the substrate. Delivery of the first process gas and the second process gas may cease at the same time or may cease at separate times.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: October 16, 2018
    Assignee: Lam Research Corporation
    Inventors: Purushottam Kumar, Hu Kang, Adrien LaVoie, Yi Chung Chiu, Frank L. Pasquale, Jun Qian, Chloe Baldasseroni, Shankar Swaminathan, Karl F. Leeser, David Charles Smith, Wei-Chih Lai
  • Publication number: 20180138036
    Abstract: Methods and apparatuses for forming high modulus silicon oxide spacers using atomic layer deposition are provided. Methods involve depositing at high temperature, using high plasma energy, and post-treating deposited silicon oxide using ultraviolet radiation. Such silicon oxide spacers are suitable for use as masks in multiple patterning applications to prevent pitch walking.
    Type: Application
    Filed: November 14, 2016
    Publication date: May 17, 2018
    Inventors: Chloe Baldasseroni, Shankar Swaminathan
  • Patent number: 9970108
    Abstract: A vapor delivery system includes an ampoule to store liquid precursor and a heater to partially vaporize the liquid precursor. A first valve communicates with a push gas source and the ampoule. A second valve supplies vaporized precursor to a heated injection manifold. A valve manifold includes a first node in fluid communication with an outlet of the heated injection manifold, a third valve having an inlet in fluid communication with the first node and an outlet in fluid communication with vacuum, a fourth valve having an inlet in fluid communication with the first node and an outlet in fluid communication with a second node, a fifth valve having an outlet in fluid communication with the second node, and a sixth valve having an outlet in fluid communication with the second node. A gas distribution device is in fluid communication with the second node.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: May 15, 2018
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Jun Qian, Hu Kang, Purushottam Kumar, Chloe Baldasseroni, Heather Landis, Andrew Kenichi Duvall, Mohamed Sabri, Ramesh Chandrasekharan, Karl Leeser, Shankar Swaminathan, David Smith, Jeremiah Baldwin, Eashwar Ranganathan, Adrien LaVoie, Frank Pasquale, Jeongseok Ha, Ingi Bae
  • Publication number: 20180122685
    Abstract: A pedestal for a substrate processing system includes a pedestal body including a substrate-facing surface. An annular band is arranged on the substrate-facing surface that is configured to support a radially outer edge of the substrate. A cavity is defined in the substrate-facing surface of the pedestal body and is located radially inside of the annular band. The cavity creates a volume between a bottom surface of the substrate and the substrate-facing surface of the pedestal body. A plurality of vents pass though the pedestal body and are in fluid communication with the cavity to equalize pressure on opposing faces of the substrate during processing.
    Type: Application
    Filed: February 13, 2017
    Publication date: May 3, 2018
    Inventors: Patrick Breiling, Ramesh Chandrasekharan, Karl Leeser, Paul Konkola, Adrien LaVoie, Chloe Baldasseroni, Shankar Swaminathan, lshtak Karim, Yukinori Sakiyama, Edmund Minshall, Sung Je Kim, Andrew Duvall, Frank Pasquale
  • Patent number: 9920844
    Abstract: A gas delivery system for a substrate processing system includes first and second valves, a first gas channel, and a cylinder. The first valve includes a first inlet and a first outlet. The first outlet is in fluid communication with a processing chamber of the substrate processing system. The second valve includes a second inlet and a second outlet. The cylinder defines a second gas channel having a first end and a second end. The cylinder is at least partially disposed within the first gas channel such that the cylinder and the first gas channel collectively define a flow channel. The flow channel is in fluid communication with the first end of the second gas channel and with the first inlet. A third gas channel is in fluid communication with the second end of the second gas channel and with the second inlet.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: March 20, 2018
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Karl Leeser, Saangrut Sangplung, Shankar Swaminathan, Frank Pasquale, Chloe Baldasseroni, Ted Minshall, Adrien LaVoie
  • Publication number: 20180068833
    Abstract: A substrate processing system for depositing film on a substrate includes a processing chamber defining a reaction volume. A showerhead includes a stem portion having one end connected adjacent to an upper surface of the processing chamber. A base portion is connected to an opposite end of the stem portion and extends radially outwardly from the stem portion. The showerhead is configured to introduce at least one of process gas and purge gas into the reaction volume. A plasma generator is configured to selectively generate RF plasma in the reaction volume. An edge tuning system includes a collar and a parasitic plasma reducing element that is located around the stem portion between the collar and an upper surface of the showerhead. The parasitic plasma reducing element is configured to reduce parasitic plasma between the showerhead and the upper surface of the processing chamber.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 8, 2018
    Inventors: Hu Kang, Adrien LaVoie, Shankar Swaminathan, Jun Qian, Chloe Baldasseroni, Frank Pasquale, Andrew Duvall, Ted Minshall, Jennifer Petraglia, Karl Leeser, David Smith, Sesha Varadarajan, Edward Augustyniak, Douglas Keil
  • Patent number: 9793096
    Abstract: A substrate processing system for depositing film on a substrate includes a processing chamber defining a reaction volume. A showerhead includes a stem portion having one end connected adjacent to an upper surface of the processing chamber. A base portion is connected to an opposite end of the stem portion and extends radially outwardly from the stem portion. The showerhead is configured to introduce at least one of process gas and purge gas into the reaction volume. A plasma generator is configured to selectively generate RF plasma in the reaction volume. An edge tuning system includes a collar and a parasitic plasma reducing element that is located around the stem portion between the collar and an upper surface of the showerhead. The parasitic plasma reducing element is configured to reduce parasitic plasma between the showerhead and the upper surface of the processing chamber.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: October 17, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Hu Kang, Adrien LaVoie, Shankar Swaminathan, Jun Qian, Chloe Baldasseroni, Frank Pasquale, Andrew Duvall, Ted Minshall, Jennifer Petraglia, Karl Leeser, David Smith, Sesha Varadarajan, Edward Augustyniak, Douglas Keil
  • Patent number: 9698042
    Abstract: A method for reducing slippage of a wafer during film deposition includes pumping out a processing chamber while the wafer is supported on lift pins or a carrier ring and lowering the wafer onto support members configured to minimize wafer slippage during deposition of the film. A multi-station processing chamber, such as a processing chamber for atomic layer deposition, can include a chuck-less pedestal at each station having wafer supports configured to prevent the wafer from moving off center by more than 400 microns. To minimize a gas cushion beneath the wafer, the wafer supports can provide a gap of at least 2 mils between the back side of the wafer and the wafer-facing surface of the pedestal.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: July 4, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Chloe Baldasseroni, Ted Minshall, Frank L. Pasquale, Shankar Swaminathan, Ramesh Chandrasekharan
  • Publication number: 20170175269
    Abstract: A gas delivery system includes a first valve including an inlet that communicates with a first gas source. A first inlet of a second valve communicates with an outlet of the first valve and a second inlet of the second valve communicates with a second gas source. An inlet of a third valve communicates with a third gas source. A connector includes a first gas channel and a cylinder defining a second gas channel. The cylinder and the first gas channel collectively define a flow channel between an outer surface of the cylinder and an inner surface of the first gas channel. The flow channel communicates with the outlet of the third valve and the first end of the second gas channel. A third gas channel communicates with the second gas channel, with the outlet of the second valve and with a gas distribution device of a processing chamber.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Inventors: Ramesh Chandrasekharan, Jennifer O'Loughlin, Saangrut Sangplung, Shankar Swaminathan, Frank Pasquale, Chloe Baldasseroni, Adrien LaVoie
  • Publication number: 20170167017
    Abstract: Disclosed are methods of depositing films of material on semiconductor substrates employing the use of a secondary purge. The methods may include flowing a film precursor into a processing chamber and adsorbing the film precursor onto a substrate in the processing chamber such that the precursor forms an adsorption-limited layer on the substrate. The methods may further include removing at least some unadsorbed film precursor from the volume surrounding the adsorbed precursor by purging the processing chamber with a primary purge gas, and thereafter reacting adsorbed film precursor while a secondary purge gas is flowed into the processing chamber, resulting in the formation of a film layer on the substrate. The secondary purge gas may include a chemical species having an ionization energy and/or a disassociation energy equal to or greater than that of O2. Also disclosed are apparatuses which implement the foregoing processes.
    Type: Application
    Filed: February 28, 2017
    Publication date: June 15, 2017
    Inventors: Adrien LaVoie, Hu Kang, Purushottam Kumar, Shankar Swaminathan, Jun Qian, Frank L. Pasquale, Chloe Baldasseroni
  • Publication number: 20170121819
    Abstract: Heights of carrier ring supports are increased at a side of a wafer that is located closer to a spindle of a plasma chamber. The heights are increased relative to a height of a carrier ring support that is located closer to side walls of the plasma chamber. The increase in the height results in an increase in thickness of a thin film deposited on the wafer to further achieve uniformity in thickness of the thin film across a top surface of the wafer.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 4, 2017
    Inventors: Shankar Swaminathan, Pramod Subramonium, Frank L. Pasquale, Jeongseok Ha, Chloe Baldasseroni
  • Patent number: 9631276
    Abstract: A gas delivery system includes a first valve including an inlet that communicates with a first gas source. A first inlet of a second valve communicates with an outlet of the first valve and a second inlet of the second valve communicates with a second gas source. An inlet of a third valve communicates with a third gas source. A connector includes a first gas channel and a cylinder defining a second gas channel. The cylinder and the first gas channel collectively define a flow channel between an outer surface of the cylinder and an inner surface of the first gas channel. The flow channel communicates with the outlet of the third valve and the first end of the second gas channel. A third gas channel communicates with the second gas channel, with the outlet of the second valve and with a gas distribution device of a processing chamber.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: April 25, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Ramesh Chandrasekharan, Jennifer O'Loughlin, Saangrut Sangplung, Shankar Swaminathan, Frank Pasquale, Chloe Baldasseroni, Adrien LaVoie
  • Patent number: 9624578
    Abstract: Methods for depositing film on substrates are provided. In these embodiments, the substrates are processed in batches. Due to changing conditions within a reaction chamber as additional substrates in the batch are processed, various film properties may trend over the course of a batch. The methods herein can be used to address the trending of film properties over the course of a batch. More specifically, film property trending is minimized by changing the amount of RF power used to process substrates over the course of the batch. Such methods are sometimes referred to as RF compensation methods.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: April 18, 2017
    Assignee: Lam Research Corporation
    Inventors: Jun Qian, Frank L. Pasquale, Adrien LaVoie, Chloe Baldasseroni, Hu Kang, Shankar Swaminathan, Purushottam Kumar, Paul Franzen, Trung T. Le, Tuan Nguyen, Jennifer Petraglia, David Charles Smith, Seshasayee Varadarajan
  • Patent number: 9617638
    Abstract: Disclosed are methods of depositing films of material on semiconductor substrates employing the use of a secondary purge. The methods may include flowing a film precursor into a processing chamber and adsorbing the film precursor onto a substrate in the processing chamber such that the precursor forms an adsorption-limited layer on the substrate. The methods may further include removing at least some unadsorbed film precursor from the volume surrounding the adsorbed precursor by purging the processing chamber with a primary purge gas, and thereafter reacting adsorbed film precursor while a secondary purge gas is flowed into the processing chamber, resulting in the formation of a film layer on the substrate. The secondary purge gas may include a chemical species having an ionization energy and/or a disassociation energy equal to or greater than that of O2. Also disclosed are apparatuses which implement the foregoing processes.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: April 11, 2017
    Assignee: Lam Research Corporation
    Inventors: Adrien LaVoie, Hu Kang, Purushottam Kumar, Shankar Swaminathan, Jun Qian, Frank Pasquale, Chloe Baldasseroni