Patents by Inventor Chon Wong

Chon Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9406765
    Abstract: Si/SiO2 core/shell nanostructures with sizes below 30 nm as trapping points in UV curable hybrid organic-inorganic gate dielectrics are presented in order to investigate printable nano floating gate transistors. Not only does the novelty of this invention comes from fabricating high-quality hybrid organic/inorganic gate dielectric layer by Sol-Gel process at low temperature but also incorporating the monolayer of high-density of Si nanoparticles (NPs) without obvious interface defects and keeping the quality of dielectric layers. Fixed-charge trapping defects are successfully removed from hybrid dielectrics by UV curing together with low temperature thermal curing and mobile charges solely related to Si/SiO2 core/shell nanostructures on charge trapping layer clearly demonstrate memory effects on printable device. Thin/uniform SiO2 shell on each Si NP functions as tunneling layer of flash memory devices, significantly simplifying the fabrication of printable nano floating gate memory device.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: August 2, 2016
    Assignee: NANO AND ADVANCED MATERIALS INSTITUTE LIMITED
    Inventors: Caiming Sun, Chun Zhao, Ka Chon Wong
  • Publication number: 20070152812
    Abstract: A system and method that uses a non-invasive method, such as a wearable module equipped with sensors placed on a subject connected to a computer-linked module, to monitor life signs like heartbeat waveforms and body temperatures. Life signs indicate the health of a living being or a dynamic system (a mechanical system containing moving parts, like motors). The health of the system is defined by a set of known good spectra (such as its frequency/wavelet transform spectrum), with deviations triggering alerts. A garment embedded with a piezoelectric material and an electronic temperature sensor, when placed in contact with the body, captures acoustic waves from the heart and body temperature. Both sensors are connected to a garment-mounted module with an embedded flexible printed antenna (WEM). A separate WEM with reconfigured daughterboard software forms a bidirectional wireless data connection to a computer.
    Type: Application
    Filed: September 20, 2006
    Publication date: July 5, 2007
    Inventors: Chon Wong, An-Kwok Wong, Belinda Wong
  • Publication number: 20070106775
    Abstract: A proximity network map defines who and what objects have come in contact of each other including location and time. This map selects the list people who have come in contact with known infected people based on contagious disease epidemiology criteria to control its spread, or to prevent radiation poisoning, limit bio-chemicals exposure, etc. These people then undergo testing and quarantine procedures. It monitors hygiene practices and reduces nosocomial infections in hospitals and mitigates the pandemic flu threat by controlling contamination. It controls people interaction, information flow in a high security environment, control crime or gang activities. Each person or object carrying a proximity-sensing unit with unique ID records all units it encountered over a period of time. This information is stored with time stamp in a relational database and transferred to network servers. The databases are then replication throughout via a central web database server for retrieval and analysis.
    Type: Application
    Filed: February 27, 2006
    Publication date: May 10, 2007
    Inventor: Chon Wong
  • Publication number: 20050115956
    Abstract: A heating element made from flexible circuit technology with a single contiguous heating zone for uniform heating or multiple temperature heating zones is described. These flexible heating elements can conform to three dimensional object surfaces with irregular shape. The heating element's overall flexibility and its thickness (in the region of 10 mils) allow for heating many object shapes in an efficient, compact and light-weight manner. Each thermal sensor or thermostat is used to regulate each heating zone and provide a unique temperature setting. A thermostat can be mounted directly on an object's metallic surface. In addition, using diodes connected to the flexible heating element is described here to allow the use of two or multiple voltage sources. The technique permits one heating element to be powered from either AC or DC sources with comparable heating characteristics from both.
    Type: Application
    Filed: December 6, 2004
    Publication date: June 2, 2005
    Inventor: Chon Wong