Patents by Inventor Chou-Sheng Wang

Chou-Sheng Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140198535
    Abstract: Method and apparatus for controlling a programmable power converter are provided. The method and apparatus generate a first power source and a second power source. The voltage level of the second power source is lower than the voltage level of the first power source. The first power source and the second power source provide a power supply for a control circuit. The control circuit will use the first power source as its power supply when the first power source is low. The control circuit will use the second power source as its power supply for saving the power when the first power source is high.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Applicant: System General Corp.
    Inventors: TA-YUNG YANG, CHOU-SHENG WANG, PEI-SHENG TSU, YI-MIN HSU
  • Publication number: 20140192565
    Abstract: A control circuit of a power converter and a method for controlling the power converter are provided. The control circuit of the power converter comprises a switching circuit and a temperature-sensing device. The switching circuit generates a switching signal in response to a feedback signal, and the switching circuit generates a current-sensing signal for regulating an output of the power converter. The temperature-sensing device generates a temperature signal in response to temperature of the temperature-sensing device.
    Type: Application
    Filed: January 2, 2014
    Publication date: July 10, 2014
    Applicant: SYSTEM GENERAL CORP.
    Inventor: Chou-Sheng Wang
  • Publication number: 20140118039
    Abstract: A control circuit of a power converter is provided. The control circuit includes a switching circuit and a charge pump circuit. The switching circuit generates a switching signal for controlling the power converter. The charge pump circuit includes an oscillator for generating an oscillation signal synchronized with the switching signal. The oscillation signal is coupled to control a switch of the charge pump circuit for generating a voltage source.
    Type: Application
    Filed: September 13, 2013
    Publication date: May 1, 2014
    Applicant: SYSTEM GENERAL CORPORATION
    Inventors: Ta-Yung YANG, Chou-Sheng WANG, Tse-Jen TSENG
  • Patent number: 8649191
    Abstract: A synchronous rectifier for a switching power converter is provided and includes a power transistor, a diode, and a control circuit. The power transistor and the diode are coupled to a transformer and an output of the power converter for the rectification. The control circuit generates a drive signal to switch on the power transistor once the diode is forward biased. The control circuit includes a phase-lock circuit. The phase-lock circuit generates an off signal to switch off the power transistor in response to a pulse width of the drive signal. The pulse width of the drive signal is shorter than a turned-on period of the diode. The phase-lock circuit further reduces the pulse width of the drive signal in response to a feedback signal. The feedback signal is correlated to an output load of the power converter.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: February 11, 2014
    Assignee: System General Corporation
    Inventors: Ta-Yung Yang, Chou-Sheng Wang, Rui-Hong Lu
  • Publication number: 20140016374
    Abstract: A regulation circuit with the output cable compensation is developed for a power converter. It includes an error amplifier for generating a feedback signal in accordance with an output of the power converter. A compensation circuit is coupled to a transformer of the power converter for generating a compensation signal in response to a transformer signal generated by the transformer. The feedback signal is applied to generate a switching signal for switching the transformer and regulating the output of the power converter. The compensation signal is coupled to modulate the feedback signal for compensating a voltage drop of the output cable of the power converter.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 16, 2014
    Inventors: TA-YUNG YANG, CHOU-SHENG WANG
  • Publication number: 20140009976
    Abstract: A control circuit and a method for controlling a power converter are provided. The method for controlling the power converter includes the following steps. A detection signal is received from the secondary side of the power transformer and a first switching signal is generated in accordance with the detection signal. A second switching signal is generated in accordance with the first switching signal. A voltage signal is generated in accordance with the second switching signal. A comparison signal is generated in accordance with the first switching signal and the second switching signal. The voltage signal and the comparison signal are compared for outputting a comparison result. A gate signal is generated in accordance with the detection signal and the comparison result to control on and off states of a synchronization switch.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 9, 2014
    Applicant: SYSTEM GENERAL CORP.
    Inventors: Chou-Sheng Wang, Chia-Yo Yeh, Rui-Hong Lu, Jhih-Da Hsu, Ying-Chieh Su
  • Patent number: 8625313
    Abstract: A control circuit for a switching power converter is provided. The control circuit is installed between a secondary side and an output of the power converter and coupled to control a switching device. The control circuit includes a linear predict circuit, a reset circuit, a charge/discharge circuit, and a PWM circuit. The linear predict circuit is coupled to receive a linear predict signal from the secondary side for generating a charging signal. The reset circuit is couple to receive a resetting signal for generating a discharging signal. The charge/discharge circuit is coupled to receive the charging signal and the discharging signal for generating a ramp signal. The PWM circuit is coupled to receive the linear predict signal for enabling a switching signal and receive the ramp signal for resetting the switching signal.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: January 7, 2014
    Assignee: System General Corporation
    Inventors: Chia-Yo Yeh, Jhih-Da Hsu, Ying-Chieh Su, Chien-Chun Huang, Chou-Sheng Wang
  • Patent number: 8542507
    Abstract: An adaptive synchronous rectification control circuit and a control method are developed. The control circuit comprises an adaptive circuit that generates a reference signal in response to a detection signal of a power converter. A clamped circuit clamps the reference signal at a threshold voltage if the reference signal equals or is greater than the threshold voltage. A switching circuit generates a control signal to control a synchronous switch of the power converter in response to the detection signal and the reference signal. The control method generates the reference signal in response to the detection signal. The reference signal is clamped at the threshold voltage if the reference signal equals or is greater than the threshold voltage. The method further generates the control signal to control the synchronous switch of the power converter in response to the detection signal and the reference signal.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: September 24, 2013
    Assignee: System General Corp.
    Inventors: Jhih-Da Hsu, Chia-Yo Yeh, Chou-Sheng Wang, Ying-Chieh Su, Rui-Hong Lu
  • Publication number: 20130027987
    Abstract: A regulation circuit of a power converter for cable compensation according to the present invention comprises a signal generator generating a compensation signal in accordance with a synchronous rectifying signal. An error amplifier has a reference signal for generating a feedback signal in accordance with an output voltage of the power converter. The compensation signal is coupled to program the reference signal. The feedback signal is coupled to generate a switching signal for regulating an output of the power converter. The regulation circuit of the present invention compensates the output voltage without a shunt resistor to sense the output current of the power converter for reducing power loss.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 31, 2013
    Applicant: SYSTEM GENERAL CORP.
    Inventors: TA-YUNG YANG, CHOU-SHENG WANG
  • Patent number: 8154888
    Abstract: A synchronous rectifier circuit of a switching power converter is provided and includes first and second power transistors and first and second diodes connected to a transformer and an output of the power converter for rectifying. An arbiter circuit generates a lock signal to prevent the second power transistor from being turned on when the first power transistor is turned on. A controller generates a drive signal to control the first power transistor according to an on signal and an off signal. A phase-lock circuit generates the off signal according to the on signal. The on signal is enabled once the first diode is forward biased. The one signal enables the drive signal for turning on the first power transistor. The off signal disables the drive signal for turning off the first power transistor. The off signal is enabled before the disabling of the on signal.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: April 10, 2012
    Assignee: System General Corporation
    Inventors: Ta-Yung Yang, Chou-Sheng Wang, Pei-Sheng Tsu
  • Publication number: 20120033460
    Abstract: A control circuit for a switching power converter is provided. The control circuit is installed between a secondary side and an output of the power converter and coupled to control a switching device. The control circuit includes a linear predict circuit, a reset circuit, a charge/discharge circuit, and a PWM circuit. The linear predict circuit is coupled to receive a linear predict signal from the secondary side for generating a charging signal. The reset circuit is couple to receive a resetting signal for generating a discharging signal. The charge/discharge circuit is coupled to receive the charging signal and the discharging signal for generating a ramp signal. The PWM circuit is coupled to receive the linear predict signal for enabling a switching signal and receive the ramp signal for resetting the switching signal.
    Type: Application
    Filed: May 20, 2011
    Publication date: February 9, 2012
    Applicant: SYSTEM GENERAL CORPORATION
    Inventors: Chia-Yo Yeh, Jhih-Da Hsu, Ying-Chieh Su, Chien-Chun Huang, Chou-Sheng Wang
  • Publication number: 20110305055
    Abstract: An adaptive synchronous rectification control circuit and a control method are developed. The control circuit comprises an adaptive circuit that generates a reference signal in response to a detection signal of a power converter. A clamped circuit clamps the reference signal at a threshold voltage if the reference signal equals or is greater than the threshold voltage. A switching circuit generates a control signal to control a synchronous switch of the power converter in response to the detection signal and the reference signal. The control method generates the reference signal in response to the detection signal. The reference signal is clamped at the threshold voltage if the reference signal equals or is greater than the threshold voltage. The method further generates the control signal to control the synchronous switch of the power converter in response to the detection signal and the reference signal.
    Type: Application
    Filed: March 23, 2011
    Publication date: December 15, 2011
    Applicant: SYSTEM GENERAL CORP.
    Inventors: JHIH-DA HSU, CHIA-YO YEH, CHOU-SHENG WANG, YING-CHIEH SU, RUI-HONG LU
  • Patent number: 8072787
    Abstract: An synchronous rectifying apparatus or synchronous rectifying circuit of a soft switching power converter is provided to improve the efficiency. The integrated synchronous rectifying circuit includes: a power transistor connected from a transformer to the output of the power converter for rectifying; a controller having a latch circuit generates a drive signal to control the power transistor in response to a switching signal generated by a winding of the transformer in response to the switching of the transformer. The controller turns off the power transistor when the switching signal is lower than a low-threshold. The power transistor is turned on when the switching signal is higher than a high-threshold. Furthermore, a maximum-on-time circuit provided in the controller is applied to generate a maximum-on-time signal for limiting the maximum on time of the power transistor.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: December 6, 2011
    Assignee: System General Corporation
    Inventors: Ta-Yung Yang, Wei-Li Hsu, Chou-Sheng Wang
  • Publication number: 20110292702
    Abstract: A synchronous rectifying circuit for a switching power converter is provided. The synchronous rectifying circuit includes a power transistor, a diode, and a control circuit. The power transistor and the diode are coupled to a transformer and an output of the power converter for rectification. The control circuit generates a drive signal to switch on the power transistor once the diode is forward biased. The control circuit includes a monitor circuit. The monitor circuit generates a monitor signal an off signal to switch off the power transistor in response to a pulse width of the drive signal for generating an off signal to switch off the power transistor. The monitor circuit further reduces the pulse width of the drive signal in response to a change of a feedback signal. The feedback signal is correlated to an output load of the power converter.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 1, 2011
    Applicant: SYSTEM GENERAL CORPORATION
    Inventors: Tien-Chi Lin, Ying-Chieh Su, Chou-Sheng Wang
  • Patent number: 8023289
    Abstract: A synchronous rectifier of a resonant switching power converter is provided to improve efficiency. The synchronous rectifier includes a power transistor and a diode connected to a transformer and an output of the resonant switching power converter for ratifications. A controller generates a drive signal to control the power transistor in response to an on signal and an off signal. A causal circuit is developed to generate the off signal in accordance with the on signal. The on signal is enabled once the diode is forward biased. The on signal is coupled to enable the drive signal for switching on the power transistor. The off signal is coupled to disable the drive signal for switching off the power transistor. The off signal is enabled before the on signal is disabled.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: September 20, 2011
    Assignee: System General Corp.
    Inventors: Ta-Yung Yang, Ying-Chieh Su, Chou-Sheng Wang, Tien-Chi Lin, Jhih-Da Hsu
  • Patent number: 8004862
    Abstract: A synchronous rectifying circuit of soft switching power converter is provided to improve the efficiency. The integrated synchronous rectifier includes a power transistor connected from a transformer to the output of the power converter for rectifying. A controller having a latch circuit generates a drive signal to control the power transistor in response to a switching-current signal. A current transformer generates the switching-current signal in response to the switching current of the transformer. The controller turns off the power transistor when the switching-current signal is lower than a second threshold. The power transistor is turned on once the switching-current signal is higher than a first threshold. Furthermore, a pulse-width detection circuit generates a pulse signal coupled to disable the drive signal and turn off the power transistor.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: August 23, 2011
    Assignee: System General Corp.
    Inventors: Ta-Yung Yang, Chou Sheng Wang, Wei Li Hsu
  • Patent number: 7911813
    Abstract: A synchronous rectifying circuit of a resonant switching power converter is provided to improve the efficiency. The synchronous rectifying circuit includes a power transistor and a diode connected to a transformer and an output ground of the power converter for rectifying. A sense transistor is coupled to the power transistor for generating a mirror current correlated to a current of the power transistor. A controller generates a driving signal to control the power transistor in response to a switching-current signal. A current-sense device is coupled to the sense transistor for generating the switching-current signal in response to the mirror current. The controller enables the driving signal to turn on the power transistor once the diode is forwardly biased. The controller generates a reset signal to disable the driving signal and turn off the power transistor once the switching-current signal is lower than a threshold.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: March 22, 2011
    Assignee: System General Corp.
    Inventors: Ta-yung Yang, Chen-Hui Chan, Chou-Sheng Wang, Shih-Hung Hsieh
  • Patent number: 7885084
    Abstract: A control circuit for soft switching and synchronous rectifying is provided for power converter. A switching-signal circuit is used for generating drive signals and a pulse signal in response to a leading edge and a trailing edge of a switching signal. The switching signal is developed for regulating the power converter. Drive signals are coupled to switch the power transformer. A propagation delay is developed between drive signals to achieve soft switching of the power converter. An isolation device is coupled to transfer the pulse signal from a primary side of a power transformer to a secondary side of the power transformer. A controller of the integrated synchronous rectifier is coupled to the secondary side of the power transformer for the rectifying operation. The controller is operated to receive the pulse signal for switching on/off the power transistor. The pulse signal is to set or reset a latch circuit of the controller for controlling the power transistor.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: February 8, 2011
    Assignee: System General Corp.
    Inventors: Ta-yung Yang, Pei-Sheng Tsu, Chou-Sheng Wang
  • Publication number: 20100201334
    Abstract: A synchronous rectifier for a switching power converter is provided and includes a power transistor, a diode, and a control circuit. The power transistor and the diode are coupled to a transformer and an output of the power converter for the rectification. The control circuit generates a drive signal to switch on the power transistor once the diode is forward biased. The control circuit includes a phase-lock circuit. The phase-lock circuit generates an off signal to switch off the power transistor in response to a pulse width of the drive signal. The pulse width of the drive signal is shorter than a turned-on period of the diode. The phase-lock circuit further reduces the pulse width of the drive signal in response to a feedback signal. The feedback signal is correlated to an output load of the power converter.
    Type: Application
    Filed: October 15, 2009
    Publication date: August 12, 2010
    Applicant: SYSTEM GENERAL CORPORATION
    Inventors: Ta-Yung Yang, Chou-Sheng Wang, Rui-Hong Lu
  • Publication number: 20100172156
    Abstract: A synchronous rectifier circuit of a switching power converter is provided and includes first and second power transistors and first and second diodes connected to a transformer and an output of the power converter for rectifying. An arbiter circuit generates a lock signal to prevent the second power transistor from being turned on when the first diode the first power transistor is turned on. A controller generates a drive signal to control the first power transistor according to an on signal and an off signal. A phase-lock circuit generates the off signal according to the on signal. The on signal is enabled once the first diode is forward biased. The one signal enables the drive signal for turning on the first power transistor. The off signal disables the drive signal for turning off the first power transistor. The off signal is enabled before the disabling of the on signal.
    Type: Application
    Filed: January 5, 2009
    Publication date: July 8, 2010
    Applicant: SYSTEM GENERAL CORPORATION
    Inventors: Ta-Yung YANG, Chou-Sheng WANG, Pei-Sheng TSU