Patents by Inventor Chris A. Wright

Chris A. Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8968555
    Abstract: The present invention is a process for desulfurizing hydrocarbon feedstreams with alkali metal compounds and regenerating the alkali metal compounds via the use of a copper sulfide reagent. The present invention employs the use of a copper sulfide reagent to convert alkali metal hydrosulfides in the generation or regeneration of the alkali hydroxide compounds which may be utilized in a desulfurization process for hydrocarbon feedstreams. Additionally, in preferred embodiments of the processes disclosed herein, carbonates which form as byproducts of the desulfurization process, and are non-regenerable with copper sulfide, are removed from the alkali hydroxide stream.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: March 3, 2015
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Daniel P. Leta, Jonathan M. McConnachie, James R. Bielenberg, Chris A. Wright, Leo D. Brown
  • Patent number: 8696889
    Abstract: The present invention is a process for desulfurizing hydrocarbon feedstreams with alkali metal compounds and regenerating the alkali metal compounds via the use of a transition metal oxide. The present invention employs the use of a transition metal oxide, preferably copper oxide, in order to convert spent alkali metal hydrosulfides in the regeneration of the alkali hydroxide compounds for reutilization in the desulfurization process for the hydrocarbon feedstreams. Additionally, in preferred embodiments of the processes disclosed herein, carbonates which may be detrimental to the overall desulfurization process and related equipment are removed from the regenerated alkali metal stream.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: April 15, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: James R. Bielenberg, Jonathan M. McConnachie, Daniel P. Leta, Chris A. Wright, Leo D. Brown
  • Patent number: 8440069
    Abstract: Method of isolating active resins from a high solvency dispersive power (HSDP) crude oil includes providing a HSDP crude oil, deasphalting the HSDP crude oil into at least a deasphalted oil (DAO) fraction and a first asphaltenes fraction, deasphalting the first asphaltenes fraction to isolate active resins from a second asphaltenes fraction, and combining the DAO fraction and the second asphaltenes fraction to form a de-resinated crude. Method of using components isolated from a high solvency dispersive power (HSDP) crude oil includes providing a HSDP crude oil, deasphalting the HSDP crude oil into at least a deasphalted oil (DAO) fraction and a first asphaltenes fraction, deasphalting the first asphaltenes fraction to isolate active resins from a second asphaltenes fraction, and selecting at least one of the DAO fraction, the active resins, or the second asphaltenes fraction for use in a refinery process.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: May 14, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chris A. Wright, Glen B. Brons, Sharon Feiller
  • Patent number: 8425761
    Abstract: Non-high solvency dispersive power (non-HSDP) crude oil with increased fouling mitigation and on-line cleaning effects includes a base non-HSDP crude oil and an effective amount of resins isolated from a high solvency dispersive power (HSDP) crude oil, and method of making same. Also, methods of using such non-HSDP crude oil for on-line cleaning of a fouled crude oil refinery component, for reducing fouling in a crude oil refinery component, and in a system capable of experiencing fouling conditions associated with particulate or asphaltene fouling.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: April 23, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chris A. Wright, Glen B. Brons, Sharon Feiller, George A. Lutz
  • Patent number: 8398848
    Abstract: The present invention is a process for desulfurizing hydrocarbon feedstreams with alkali metal compounds and regenerating the alkali metal compounds via the use of a copper metal reagent. The present invention employs the use of a copper metal reagent to convert spent alkali metal hydrosulfides in the regeneration of the alkali hydroxide compounds for reutilization in the desulfurization process for the hydrocarbon feedstreams. Additionally, in preferred embodiments of the processes disclosed herein, carbonates which may be detrimental to the overall desulfurization process and related equipment are removed from the regenerated alkali metal stream.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: March 19, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jonathan M. McConnachie, Daniel P Leta, James R. Bielenberg, Chris A. Wright, Leo D. Brown
  • Patent number: 8075762
    Abstract: The electrodesulfurization of heavy oils wherein a feedstream comprised of bitumen or heavy oil is conducted, along with an effective amount of hydrogen, to an electrochemical cell. A current is applied to the cell wherein sulfur from the feedstream combines with hydrogen to form hydrogen sulfide which is removed.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: December 13, 2011
    Assignee: ExxonMobil Reseach and Engineering Company
    Inventors: Mark A. Greaney, Chris A. Wright, Jonathan M. McConnachie, Howard Freund, Kun Wang
  • Patent number: 8062504
    Abstract: A method of reducing asphaltene and particulate induced fouling during the thermal processing of petroleum oils utilizes resin extracts from HSDP crude oils to disperse and solubilize asphaltenes and disperse inorganic particulate contaminants such as salts and iron oxide. The extracts are essentially maltene fractions which may be separated from the HSDP crude by a process of extraction from a precipitated asphalt fraction using light paraffinic solvents such as n-heptane.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: November 22, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Chris A Wright, Glen B. Brons
  • Patent number: 7951340
    Abstract: Atmospheric and/or vacuum resid fractions of a high solvency dispersive power (HSDP) crude oil are added to a blend of crude oil to prevent fouling of crude oil refinery equipment and to perform on-line cleaning of fouled refinery equipment. The HSDP resid fractions dissolve asphaltene precipitates and maintain suspension of inorganic particulates before coking affects heat exchange surfaces.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: May 31, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Glen B. Brons, Chris A. Wright, George A. Lutz, Mark A. Greaney
  • Patent number: 7927479
    Abstract: Performance of equipment, such as a desalter, in a refinery is monitored in real-time and on-line to minimize fouling of downstream equipment. Using an instrument to measure particles and droplets in-process allows monitoring of the various operations to optimize performance. Such measurement can also be used during crude oil blending to detect asphaltene precipitates that can cause fouling and can be used for monitoring other fouling streams.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: April 19, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mark A. Greaney, Glen B. Brons, Chris A. Wright, Daniel P. Leta
  • Patent number: 7919058
    Abstract: A high solvency dispersive power (HSDP) crude oil is added to a blend of incompatible and/or near-incompatible oils to proactively address the potential for fouling heat exchange equipment. The HSDP component dissolves asphaltene precipitates and maintains suspension of inorganic particulates before coking affects heat exchange surfaces. HSDP co-blending for fouling mitigation and on-line cleaning can be affected using different concentrations of top-performing and moderate-performing HSDP crude oils.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: April 5, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Glen B. Brons, Chris A. Wright
  • Patent number: 7901564
    Abstract: Atmospheric and/or vacuum resid fractions of a high solvency dispersive power (HSDP) crude oil are added to a blend of crude oil to prevent fouling of crude oil refinery equipment and to perform on-line cleaning of fouled refinery equipment. The HSDP resid fractions dissolve asphaltene precipitates and maintain suspension of inorganic particulates before coking affects heat exchange surfaces.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: March 8, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Glen B. Brons, Chris A. Wright, George A. Lutz, Mark A. Greaney
  • Publication number: 20110024260
    Abstract: A high solvency dispersive power (HSDP) crude oil is added to a blend of incompatible and/or near-incompatible oils to proactively address the potential for fouling heat exchange equipment. The HSDP component dissolves asphaltene precipitates and maintains suspension of inorganic particulates before coking affects heat exchange surfaces. HSDP co-blending for fouling mitigation and on-line cleaning can be affected using different concentrations of top-performing and moderate-performing HSDP crude oils.
    Type: Application
    Filed: October 8, 2010
    Publication date: February 3, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Glen B. BRONS, Chris A. WRIGHT
  • Publication number: 20110024261
    Abstract: Atmospheric and/or vacuum resid fractions of a high solvency dispersive power (HSDP) crude oil are added to a blend of crude oil to prevent fouling of crude oil refinery equipment and to perform on-line cleaning of fouled refinery equipment. The HSDP resid fractions dissolve asphaltene precipitates and maintain suspension of inorganic particulates before coking affects heat exchange surfaces.
    Type: Application
    Filed: October 12, 2010
    Publication date: February 3, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Glen B. BRONS, Chris A. WRIGHT, George A. LUTZ, Mark A. GREANEY
  • Patent number: 7837855
    Abstract: A high solvency dispersive power (HSDP) crude oil is added to a blend of incompatible and/or near-incompatible oils to proactively address the potential for fouling heat exchange equipment. The HSDP component dissolves asphaltene precipitates and maintains suspension of inorganic particulates before coking affects heat exchange surfaces. HSDP co-blending for fouling mitigation and on-line cleaning can be affected using different concentrations of top-performing and moderate-performing HSDP crude oils.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: November 23, 2010
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Glen B. Brons, Chris A. Wright
  • Patent number: 7833407
    Abstract: A high solvency dispersive power (HSDP) crude oil is added to a blend of incompatible oils to proactively address the potential for fouling heat exchange equipment. The HSDP component dissolves asphaltene precipitates and maintains suspension of inorganic particulates before coking affects heat exchange surfaces. An HSDP oil is also flushed through heat exchange equipment to remove any deposits and/or precipitates on a regular maintenance schedule before coking can affect heat exchange surfaces.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: November 16, 2010
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Glen B. Brons, Chris A. Wright, George A. Lutz, Daniel P. Leta
  • Publication number: 20100163461
    Abstract: A method and system for controlling fouling in a hydrocarbon refining process that includes measuring a level of a particulate in a process stream of the hydrocarbon refining process in communication with a hydrocarbon refinery component, identifying an effective amount of additive capable of reducing particulate-induced fouling based at least in part on the measured level of the particulate in the process stream, and introducing the effective amount of additive to the hydrocarbon refining process.
    Type: Application
    Filed: October 6, 2009
    Publication date: July 1, 2010
    Inventors: Chris A Wright, Glen B. Brons, Manuel S. Alvarez, Peter W. Jacobs, Sharon A. Feiller, George A. Lutz
  • Publication number: 20100147333
    Abstract: Non-high solvency dispersive power (non-HSDP) crude oil with increased fouling mitigation and on-line cleaning effects includes a base non-HSDP crude oil and an effective amount of resins isolated from a high solvency dispersive power (HSDP) crude oil, and method of making same. Also, methods of using such non-HSDP crude oil for on-line cleaning of a fouled crude oil refinery component, for reducing fouling in a crude oil refinery component, and in a system capable of experiencing fouling conditions associated with particulate or asphaltene fouling.
    Type: Application
    Filed: December 11, 2008
    Publication date: June 17, 2010
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Chris A. Wright, Glen B. Brons, Sharon A. Feiller, George A. Lutz
  • Publication number: 20100084318
    Abstract: The present invention is a process for desulfurizing hydrocarbon feedstreams with alkali metal compounds and regenerating the alkali metal compounds via the use of a copper sulfide reagent. The present invention employs the use of a copper sulfide reagent to convert alkali metal hydrosulfides in the generation or regeneration of the alkali hydroxide compounds which may be utilized in a desulfurization process for hydrocarbon feedstreams. Additionally, in preferred embodiments of the processes disclosed herein, carbonates which form as byproducts of the desulfurization process, and are non-regenerable with copper sulfide, are removed from the alkali hydroxide stream.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 8, 2010
    Inventors: Daniel P. Leta, Jonathan M. McConnachie, James R. Bielenberg, Chris A. Wright, Leo D. Brown
  • Publication number: 20100084317
    Abstract: The present invention is a process for desulfurizing hydrocarbon feedstreams with alkali metal compounds and regenerating the alkali metal compounds via the use of a copper metal reagent. The present invention employs the use of a copper metal reagent to convert spent alkali metal hydrosulfides in the regeneration of the alkali hydroxide compounds for reutilization in the desulfurization process for the hydrocarbon feedstreams. Additionally, in preferred embodiments of the processes disclosed herein, carbonates which may be detrimental to the overall desulfurization process and related equipment are removed from the regenerated alkali metal stream.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 8, 2010
    Inventors: Jonathan M. McConnachie, Daniel P. Leta, James R. Bielenberg, Chris A. Wright, Leo D. Brown
  • Publication number: 20100084316
    Abstract: The present invention is a process for desulfurizing hydrocarbon feedstreams with alkali metal compounds and regenerating the alkali metal compounds via the use of a transition metal oxide. The present invention employs the use of a transition metal oxide, preferably copper oxide, in order to convert spent alkali metal hydrosulfides in the regeneration of the alkali hydroxide compounds for reutilization in the desulfurization process for the hydrocarbon feedstreams. Additionally, in preferred embodiments of the processes disclosed herein, carbonates which may be detrimental to the overall desulfurization process and related equipment are removed from the regenerated alkali metal stream.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 8, 2010
    Inventors: James R. Bielenberg, Jonathan M. McConnachie, Daniel P. Leta, Chris A. Wright, Leo D. Brown