Patents by Inventor Chris E. Barns

Chris E. Barns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7208361
    Abstract: A method for making a semiconductor device is described. That method comprises forming a polysilicon layer on a dielectric layer, which is formed on a substrate. The polysilicon layer is etched to generate a patterned polysilicon layer with an upper surface that is wider than its lower surface. The method may be applied, when using a replacement gate process to make transistors that have metal gate electrodes.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: April 24, 2007
    Assignee: Intel Corporation
    Inventors: Uday Shah, Chris E. Barns, Mark L. Doczy, Justin K. Brask, Jack Kavalieros, Matthew V. Metz, Robert S. Chau
  • Patent number: 7205236
    Abstract: According to one aspect of the present invention, a method of electrochemically polishing a semiconductor substrate may be provided. A semiconductor substrate processing fluid, having a plurality of abrasive particles therein, may be placed between the surface of the semiconductor substrate and the polish head. The polish head may be moved relative to the surface of the semiconductor substrate to cause the abrasive particles to polish the surface of the semiconductor substrate. According to a second aspect of the present invention, a method for electro-polishing a semiconductor substrate may be provided. A semiconductor substrate may be placed in an electrolytic solution. A surface of the semiconductor substrate may be contacted with at least one conductive member. A voltage may be applied across the electrolytic solution and the at least one conductive member. The at least one conductive member may be moved across the surface of the semiconductor substrate.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: April 17, 2007
    Assignee: Intel Corporation
    Inventors: Paul B. Fischer, Chris E. Barns
  • Patent number: 7183184
    Abstract: A method for making a semiconductor device is described. That method comprises forming a hard mask and an etch stop layer on a patterned sacrificial gate electrode layer. After first and second spacers are formed on opposite sides of that patterned sacrificial layer, the patterned sacrificial layer is removed to generate a trench that is positioned between the first and second spacers. At least part of the trench is filled with a metal layer.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: February 27, 2007
    Assignee: Intel Corporation
    Inventors: Mark L. Doczy, Justin K. Brask, Jack Kavalieros, Uday Shah, Chris E. Barns, Robert S. Chau
  • Patent number: 7166506
    Abstract: A method of fabricating microelectronic structure using at least two material removal steps, such as for in a poly open polish process, is disclosed. In one embodiment, the first removal step may be chemical mechanical polishing (CMP) step utilizing a slurry with high selectivity to an interlevel dielectric layer used relative to an etch stop layer abutting a transistor gate. This allows the first CMP step to stop after contacting the etch stop layer, which results in substantially uniform “within die”, “within wafer”, and “wafer to wafer” topography. The removal step may expose a temporary component, such as a polysilicon gate within the transistor gate structure. Once the polysilicon gate is exposed other processes may be employed to produce a transistor gate having desired properties.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: January 23, 2007
    Assignee: Intel Corporation
    Inventors: Matthew J. Prince, Francis M. Tambwe, Chris E. Barns
  • Patent number: 7157378
    Abstract: A method for making a semiconductor device is described. That method comprises forming a dielectric layer on a substrate, forming a trench within the dielectric layer, and forming a high-k gate dielectric layer within the trench. After forming a first metal layer on the high-k gate dielectric layer, a second metal layer is formed on the first metal layer. At least part of the second metal layer is removed from above the dielectric layer using a polishing step, and additional material is removed from above the dielectric layer using an etch step.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: January 2, 2007
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Chris E. Barns, Mark L. Doczy, Uday Shah, Jack Kavalieros, Matthew V. Metz, Suman Datta, Anne E. Miller, Robert S. Chau
  • Patent number: 7153784
    Abstract: A method for making a semiconductor device is described. That method comprises forming a first dielectric layer on a substrate, then forming a trench within the first dielectric layer. After forming a second dielectric layer on the substrate, a first metal layer is formed within the trench on a first part of the second dielectric layer. A second metal layer is then formed on the first metal layer and on a second part of the second dielectric layer.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: December 26, 2006
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Jack Kavalieros, Mark L. Doczy, Uday Shah, Chris E. Barns, Matthew V. Metz, Suman Datta, Annalisa Cappellani, Robert S. Chau
  • Patent number: 7153734
    Abstract: A semiconductor device and a method for forming it are described. The semiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: December 26, 2006
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Mark L. Doczy, Jack Kavalieros, Matthew V. Metz, Chris E. Barns, Uday Shah, Suman Datta, Christopher D. Thomas, Robert S. Chau
  • Patent number: 7144816
    Abstract: Fabricating a semiconductor structure includes providing a semiconductor substrate, forming a silicide layer over the substrate, and removing a portion of the silicide layer by chemical mechanical polishing. The fabrication of the structure can also include forming a dielectric layer after forming the silicide layer, and removing a portion of the dielectric layer by chemical mechanical polishing before removing the portion of the silicide layer.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: December 5, 2006
    Assignee: Intel Corporation
    Inventors: Chris E. Barns, Mark Doczy
  • Patent number: 7138323
    Abstract: A sacrificial gate structure, including nitride and fill layers, may be replaced with a metal gate electrode. The metal gate electrode may again be covered with a nitride layer covered by a fill layer. The replacement of the nitride and fill layers may reintroduce strain and provide an etch stop.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: November 21, 2006
    Assignee: Intel Corporation
    Inventors: Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Uday Shah, Chris E. Barns, Matthew V. Metz, Suman Datta, Robert S. Chau
  • Patent number: 7109557
    Abstract: A method of forming a microelectronic structure and its associated structures is described. In one embodiment, a substrate is provided with a sacrificial layer disposed on a hard mask layer, and a metal layer disposed in a trench of the substrate and on the sacrificial layer. The metal layer is then removed at a first removal rate wherein a dishing is induced on a top surface of the metal layer until the sacrificial layer is exposed, and simultaneously removing the metal layer and the sacrificial layer at a second removal rate without substantially removing the hard mask.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: September 19, 2006
    Assignee: Intel Corporation
    Inventors: Chris E. Barns, Kevin P. O'Brien, Anne E. Miller
  • Patent number: 7078282
    Abstract: The present invention relates to the deposition of a layer above a transistor structure, causing crystalline stress within the transistor, and resulting in increased performance. The stress layer may be formed above a plurality of transistors formed on a substrate, or above a plurality of selected transistors.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: July 18, 2006
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Justin K. Brask, Chris E. Barns, Scott A. Hareland
  • Patent number: 7045428
    Abstract: A method for making a semiconductor device is described. That method comprises forming on a substrate a first gate dielectric layer that has a first substantially vertical component, then forming a first metal layer on the first gate dielectric layer. After forming on the substrate a second gate dielectric layer that has a second substantially vertical component, a second metal layer is formed on the second gate dielectric layer. In this method, a conductor is formed that contacts both the first metal layer and the second metal layer.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: May 16, 2006
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Jack Kavalieros, Mark L. Doczy, Matthew V. Metz, Uday Shah, Chris E. Barns, Suman Datta, Robert B. Turkot, Jr., Robert S. Chau
  • Patent number: 7018918
    Abstract: An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: March 28, 2006
    Assignee: Intel Corporation
    Inventors: Grant M. Kloster, Kevin P. O'brien, Michael D. Goodner, Jihperng Leu, David H. Gracias, Lee D. Rockford, Peter K. Moon, Chris E. Barns
  • Patent number: 6972225
    Abstract: At least a p-type and n-type semiconductor device deposited upon a semiconductor wafer containing metal or metal alloy gates. More particularly, a complementary metal-oxide-semiconductor (CMOS) device is formed on a semiconductor wafer having n-type and p-type metal gates.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: December 6, 2005
    Assignee: Intel Corporation
    Inventors: Mark Doczy, Justin K. Brask, Steven J. Keating, Chris E. Barns, Brian S. Doyle, Michael L. McSwiney, Jack T. Kavalieros, John P. Barnak
  • Patent number: 6953719
    Abstract: At least a p-type and n-type semiconductor device deposited upon a semiconductor wafer containing metal or metal alloy gates. More particularly, a complementary metal-oxide-semiconductor (CMOS) device is formed on a semiconductor wafer having n-type and p-type metal gates.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: October 11, 2005
    Assignee: Intel Corporation
    Inventors: Mark Doczy, Justin K. Brask, Steven J. Keating, Chris E. Barns, Brian S. Doyle, Michael L. McSwiney, Jack T. Kavalieros, John P. Barnak
  • Patent number: 6943121
    Abstract: An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: September 13, 2005
    Assignee: Intel Corporation
    Inventors: Jihperng Leu, Grant M. Kloster, David H. Gracias, Lee D. Rockford, Peter K. Moon, Chris E. Barns
  • Patent number: 6908863
    Abstract: A method of forming a microelectronic structure and its associated structures is described. In one embodiment, a substrate is provided with a sacrificial layer disposed on a hard mask layer, and a metal layer disposed in a trench of the substrate and on the sacrificial layer. The metal layer is then removed at a first removal rate wherein a dishing is induced on a top surface of the metal layer until the sacrificial layer is exposed, and simultaneously removing the metal layer and the sacrificial layer at a second removal rate without substantially removing the hard mask.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: June 21, 2005
    Assignee: Intel Corporation
    Inventors: Chris E. Barns, Kevin P. O'Brien, Anne E. Miller
  • Patent number: 6858483
    Abstract: At least a p-type and n-type semiconductor device deposited upon a semiconductor wafer containing metal or metal alloy gates. More particularly, a complementary metal-oxide-semiconductor (CMOS) device is formed on a semiconductor wafer having n-type and p-type metal gates.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: February 22, 2005
    Assignee: Intel Corporation
    Inventors: Mark Doczy, Justin K. Brask, Steven J. Keating, Chris E. Barns, Brian S. Doyle, Michael L. McSwiney, Jack T. Kavalieros, John P. Barnak
  • Publication number: 20040214385
    Abstract: At least a p-type and n-type semiconductor device deposited upon a semiconductor wafer containing metal or metal alloy gates. More particularly, a complementary metal-oxide-semiconductor (CMOS) device is formed on a semiconductor wafer having n-type and p-type metal gates.
    Type: Application
    Filed: May 20, 2004
    Publication date: October 28, 2004
    Inventors: Mark Doczy, Justin K. Brask, Steven J. Keating, Chris E. Barns, Brian S. Doyle, Michael L. McSwiney, Jack T. Kavalieros, John P. Barnak
  • Publication number: 20040192018
    Abstract: Fabricating a semiconductor structure includes providing a semiconductor substrate, forming a silicide layer over the substrate, and removing a portion of the silicide layer by chemical mechanical polishing. The fabrication of the structure can also include forming a dielectric layer after forming the silicide layer, and removing a portion of the dielectric layer by chemical mechanical polishing before removing the portion of the silicide layer.
    Type: Application
    Filed: March 12, 2004
    Publication date: September 30, 2004
    Applicant: Intel Corporation
    Inventors: Chris E. Barns, Mark Doczy