Patents by Inventor Chris J. Day

Chris J. Day has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10177717
    Abstract: For broadband data communication, a data signal voltage at a signal input node can be converted to an output signal current at a signal output node. A first transistor device can contribute to the output signal current, with its transconductance or other gain reduced to accommodate larger signal swings, at which a second transistor can turn on and increase an effective resistance value of at least a portion of a gain degeneration resistor associated with the first transistor device. The second transistor can also contribute to the output signal current to help maintain or enhance an overall gain between the signal input node and the signal output node. Multiple secondary stages, push-pull arrangements, buffer amplifier configurations (which may or may not contribute to current in the gain degeneration resistor), input and output transformers, negative feedback to help reduce component variability, and frequency modification circuits or components are also described.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: January 8, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Chris J. Day, David Frank, Michael Glasbrener
  • Publication number: 20170264252
    Abstract: For broadband data communication, a data signal voltage at a signal input node can be converted to an output signal current at a signal output node. A first transistor device can contribute to the output signal current, with its transconductance or other gain reduced to accommodate larger signal swings, at which a second transistor can turn on and increase an effective resistance value of at least a portion of a gain degeneration resistor associated with the first transistor device. The second transistor can also contribute to the output signal current to help maintain or enhance an overall gain between the signal input node and the signal output node. Multiple secondary stages, push-pull arrangements, buffer amplifier configurations (which may or may not contribute to current in the gain degeneration resistor), input and output transformers, negative feedback to help reduce component variability, and frequency modification circuits or components are also described.
    Type: Application
    Filed: March 13, 2017
    Publication date: September 14, 2017
    Inventors: Chris J. Day, David Frank, Michael Glasbrener
  • Patent number: 8102207
    Abstract: An apparatus and method to improve broadband amplifier linearization. The present circuits make use of pre-distortion techniques to improve the 3rd order distortion of an amplifier to reduce the amount of DC power required to achieve a given system requirement. In addition, the amplifiers have broadband characteristics which lend themselves to simplified pre-distortion. A pre-distortion linearizer circuit is connected across the input terminals of an amplifier. The linearizer circuit includes multiple diodes to improve the clipping performance of the linearizer. In addition, RC circuits align the phase of the linearizer distortion to be opposite that of the amplifier.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: January 24, 2012
    Assignee: TriQuint Semiconductor, Inc.
    Inventor: Chris J. Day
  • Publication number: 20100141339
    Abstract: An apparatus and method to improve broadband amplifier linearization. The present circuits make use of pre-distortion techniques to improve the 3rd order distortion of an amplifier to reduce the amount of DC power required to achieve a given system requirement. In addition, the amplifiers have broadband characteristics which lend themselves to simplified pre-distortion. A pre-distortion linearizer circuit is connected across the input terminals of an amplifier. The linearizer circuit includes multiple diodes to improve the clipping performance of the linearizer. In addition, RC circuits align the phase of the linearizer distortion to be opposite that of the amplifier.
    Type: Application
    Filed: October 16, 2009
    Publication date: June 10, 2010
    Inventor: Chris J. Day
  • Patent number: 7734193
    Abstract: An apparatus and method for detecting an output power level of an optical receiver, in order to hold output signal levels constant over changing input optical levels. A photodetector detects an optical signal, and a current from the photodetector is applied an amplifier. The amplifier may be either a differential trans-impedance amplifier, or a dual trans-impedance amplifier coupled to a differential output amplifier. An output of the amplifier is applied o a signal detector, wherein an output signal of the signal detector is an indication of an output power level of the optical receiver.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: June 8, 2010
    Assignee: Tri Quint Semiconductor, Inc.
    Inventor: Chris J. Day
  • Patent number: 7505696
    Abstract: An optical receiver with increased dynamic range includes a photodetector, a photodetector biasing network, an amplifier and a post-distortion network. The post-distortion network compensates for gain error in the amplifier, such that a composite output voltage is relatively linear with respect to input current. The dynamic gain responses of the amplifier and the post-distortion network are equal in magnitude and opposite in phase. Additionally, a signal from at least one internal node of the amplifier may be connected to the post-distortion network, in order to further improve performance.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: March 17, 2009
    Assignee: TriAccess Technologies, Inc.
    Inventor: Chris J. Day